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ABSTRACT

Today, as computer systems are ubiquitous in our everyday life, there is no
need to argue that their correctness is of capital importance. In order to prove
(in a mathematical sense) that a given system satisfies a given property, formal
methods have been introduced. They include concepts such as model checking
and synthesis. Roughly speaking, when considering synthesis, we aim at build-
ing a model of the system which is correct by construction. In order to do so,
models are mainly borrowed from game theory. During the last decades, there
has been a shift from two-player qualitative zero-sum games (used to model
antagonistic interactions between a system and its environment) to multiplayer
quantitative games (used to model complex systems composed of several agents
whose objectives are not necessarily antagonistic). In the latter setting, the
solution concepts of interest include numerous equilibria, such as Nash equi-
librium (NE) and subgame perfect equilibrium (SPE). While the existence of
equilibria is widely studied, it is also well known that several equilibria may
coexist in the same game. Nevertheless, some equilibria are more relevant than
others. For example, if we consider a game in which each player aims at sat-
isfying a given qualitative objective, it is possible to have both an equilibrium
in which no player satisfies his objective and another one in which each player
satisfies it. In this case one prefers the latter equilibrium which is more relevant.

In this thesis, we focus onmultiplayer turn-based games played on graphs ei-
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ther with qualitative or quantitative objectives. Our contributions are twofold:
(i) we provide equilibria characterizations and (ii) we use these characteriza-
tions to solve decision problems related to the existence of relevant equilibria;
and characterize their complexities.

Firstly, we provide a characterization of a weaker notion of SPE (weak SPE)
in multiplayer games with ω-regular objectives based on the payoff profiles
which are realizable by a weak SPE. We then adopt another point of view by
characterizing the outcomes of equilibria instead of their payoff profiles. In
particular we focus on weak SPE outcome characterization. As for some kinds
of games (e.g., multiplayer quantitative Reachability games), weak SPEs and
SPEs are equivalent, this characterization is useful in order to study SPEs in
these games.

Secondly, we use those different equilibrium characterizations to provide the
exact complexity classes of different decision problems related to the existence
of relevant equilibria. We mainly focus on the constrained existence problem: if
each player aims at maximizing his gain, this problem asks whether there exists
an equilibrium such that each resulting player’s gain is greater than a threshold
(one per player). We also consider variants of relevant equilibria based on
the social welfare and the Pareto optimality of the players’ payoff. In this
way, we prove the exact complexity classes for (i) the weak SPE constrained
existence problem in multiplayer games with classical qualitative objectives
such as Büchi, co-Büchi and Safety and (ii) the NE and SPE constrained
existence problems (and variants) for qualitative and quantitative reachability
games. In the latter case, the upper bounds on the required memory for
such relevant equilibria are studied and proved to be finite. Studying memory
requirements of strategies is important since with the synthesis process those
strategies have to be implemented.

Finally, we consider multiplayer, non zero-sum, turn-based timed games
with qualitative Reachability objectives together with the concept of SPE.
We prove that the SPE constrained existence problem is EXPTIME-complete
for qualitative Reachability timed games. In order to obtain an EXPTIME
algorithm, we proceed in different steps. In the first step, we prove that the
game variant of the classical region graph is a good abstraction for the SPE
constrained existence problem. In fact, we identify conditions on bisimulations
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under which the study of SPE in a given game can be reduced to the study of
its quotient.





RÉSUMÉ

Les systèmes informatiques étant omniprésents dans notre vie quotidienne, il
n’est pas nécessaire d’argumenter que leur exactitude est d’une importance
cruciale. C’est pourquoi les méthodes formelles ont été introduites afin de
prouver (dans le sens mathématique du terme) qu’un système donné satisfait
une certaine propriété. Elles incluent des concepts tels que la vérification de
modèles et la synthèse. Dans le cadre de la synthèse, le but est de construire un
système qui est correct par construction. Les modèles utilisés à cet effet sont
largement empruntés à la théorie des jeux. Durant les dernières décennies, une
transition s’est effectuée entre les jeux qualitatifs à deux joueurs et à somme-
nulle (utilisés pour modéliser les interactions antagonistes entre un système et
son environnement) et les jeux quantitatifs multijoueurs (utilisés pour mod-
éliser des systèmes complexes composés d’agents dont les objectifs ne sont pas
nécessairement antagonistes). Dans ce dernier type de jeux, les concepts de
solutions incluent de nombreux concepts d’équilibres tels que les équilibres de
Nash (NEs) et les équilibres parfaits en sous-jeux (SPEs). Au-delà du fait que
l’existence d’équilibres est déjà largement étudiée, il est aussi bien connu que
plusieurs équilibres peuvent coexister dans le même jeu. Néanmoins, certains
équilibres sont plus pertinents que d’autres. Par exemple, si on considère un
jeu où tous les joueurs veulent satisfaire un certain objectif qualitatif, il est
possible d’avoir à la fois un équilibre pour lequel aucun des joueurs ne satisfait
son objectif et un autre équilibre pour lequel tous les joueurs le satisfont. Dans
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ce cas, le dernier équilibre est préféré au premier.

Dans cette thèse, nous nous focalisons sur les jeux multijoueurs joués sur
des graphes dans lesquels les joueurs jouent tour à tour et sont munis aussi bien
d’objectifs qualitatifs que d’objectifs quantitatifs. Nos contributions sont dou-
bles : (i) nous fournissons des caractérisations d’équilibres et (ii) nous utilisons
ces caractérisations dans le but de résoudre des problèmes de décision relatifs
à l’existence d’équilibres pertinents; et nous caractérisons leur complexité.

Premièrement, bien que nous donnons une caractérisation des weak SPEs
basée sur les profils de gains réalisables par de tels équilibres et ce dans les jeux
munis d’objectifs ω-réguliers, nous nous focalisons principalement sur une autre
approche qui vise à caractériser l’ensemble des parties résultant de weak SPEs.
Puisque dans certains types de jeux (ex: les jeux avec objectifs d’accessibilité)
les notions de weak SPEs et de SPEs sont équivalentes, cette caractérisation
est utile pour étudier les SPEs dans ces jeux particuliers.

Deuxièmement, nous utilisons ces différentes caractérisations d’équilibres
afin de fournir les classes de complexité exactes de différents problèmes de déci-
sion relatifs à l’existence d’équilibres pertinents. Nous étudions principalement
le problème d’existence sous contraintes : si chaque joueur a pour but de max-
imiser son gain, ce problème demande s’il existe un équilibre tel que le gain de
chaque joueur, s’il se conforme à cet équilibre, soit plus grand qu’un certain
seuil. Nous considérons aussi des variantes d’équilibres pertinents basés sur le
bien-être social et la Pareto optimalité des profils de gains.

Finalement, nous étudions comment nos résultats peuvent être utilisés dans
le cadre des jeux multijoueurs temporisés dans lesquels les joueurs jouent tour
à tour et sont munis d’objectifs d’accessibilité qualitatifs.
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CHAPTER 1

INTRODUCTION

1.1 Context

Computer Systems and Formal Methods Nowadays computer systems
are more and more involved in our everyday life. These systems become in-
creasingly complex and interact either together or with humans. Moreover,
some of these reactive systems are used by humans for critical tasks such as
medicine, transport, etc. For this kind of critical systems, bugs may have dra-
matic consequences. For this reason it is crucial to ensure that a system is
correct and satisfies some properties. One way to do so is program testing but
as E. W. Dijkstra said: “Program testing can be used to show the presence of
bugs, but never to show their absence”. Formal methods through concepts such
as model checking and synthesis provide techniques to mathematically prove
that a system is correct.

Model checking, proved relevant in companies such as IBM or Intel, allows
one to systematically check if some properties hold in the system. In order to do
so, we have to give formal descriptions of the system thanks to a mathematical
model (for instance a transition system) and of the properties that the system
has to satisfy (thanks to Linear Temporal Logic (LTL) formulae for example).
Model checking intends to provide efficient algorithms to answer to the question
“Does the system satisfy the specifications?”. The book authored by Baier and
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20 Chapter 1 – Introduction

Katoen [BK08] provides a comprehensive introduction to this broad subject.
Another point of view is that of synthesis (see e.g., [PR89]); with synthesis one
wants to build a model of the system which is correct by construction: game
theory is well-suited for this purpose.

Game Theory and Rationality Game theory is a branch of mathemat-
ics which allows one to model interactions between individuals. This field
has been applied in many disciplines such as economics, biology or computer
science. Von Neumann and Morgenstern are known as the fathers of game
theory. They published in 1944 the book “Theory of Games and Economic
Behavior” [vNM44]. Their work is based on an axiomatization of the ratio-
nal behavior of a decision maker. Such a decision maker should maximize the
expected value of his utility function if he is rational.

Two-player Games Played on Graphs Two-player zero-sum games played
on graphs are commonly used to model reactive systems where a system in-
teracts with its environment. In such setting the system wants to achieve a
goal—to respect a certain property—and the environment acts in an antag-
onistic way. The underlying game is described as follows: the two players
are the system and the environment, the vertices of the graph are all possible
configurations in which the system can be and an infinite path in this graph,
called a play, depicts a possible sequence of interactions between the system
and its environment. In such a game, each player chooses a strategy : it is the
way he plays given some information about the game and past actions of the
other player. Following a strategy for each player results in a particular play in
the game called the outcome. Finding how the system can ensure that a given
property is satisfied amounts to finding a winning strategy for the system in
this game. A winning strategy for the system is a strategy which ensures that
the system achieves his goal whathever the strategy of the environment.

From Two-player Games to Multiplayer Games This previous model is
not realistic since it assumes that the system is fully antagonistic and composed
of two agents (the system and the environment). However the environment may
have its own objective and the system may be composed of many components



1.1 – Context 21

which all have their own specifications. Thus, the model evolved from two-
player zero-sum games to multiplayer games where all players have their own
objectives which are not necessarily antagonistic.

From Qualitative to Quantitative Objectives Additionally, even if ω-
regular objectives are widely studied, they only offer to express the satisfaction
of a specification or not (qualitative objectives). Thus in some cases, for ex-
ample if we want to measure the amount of energy used in a system, one needs
to rely on quantitative specifications (quantitative objectives). These games
are called multiplayer quantitative games. In this setting, all players are as-
sumed to be rational in the sense that they all want to maximize their gains
(or minimize their costs).

More details about these settings may be found in the following, non-exhaustive,
references: e.g., [Tho95, GTW02, AG11, ZP96, Bru17].

Equilibria In the setting of multiplayer quantitative game, the solution con-
cept of winning strategy is not well-suited anymore. Equilibria are widely
studied in multiplayer games: Nash equilibrium (NE) [Nas50], subgame per-
fect equilibrium (SPE) [Sel65], secure equilibrium (SE) [CHJ04, BBDPG13],
. . . Some of them are directly provided by classical game theory. Roughly
speaking, an equilibrium is a contract between the players such that each
player has no incentive to deviate from this contract if he assumes that the
other players will follow it. The studied equilibrium depends on the kind of
games which are of interest. For instance, SPEs take more accurately into
account the sequential aspect of games played on graphs.

Relevant equilibria While the existence of equilibria is widely studied,
it is also well known that several equilibria may coexist in the same game
(e.g.,[Umm08]). Nevertheless, some equilibria are more relevant than others.
For example, if we consider a game in which each player aims at satisfying a
given qualitative objective, it is possible to have both an equilibrium in which
no player satisfies his objective and another one in which each player satisfies
it. In this case one prefers the latter equilibrium which is more relevant.
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1.2 Contributions

Before providing our main contributions, we explain the philosophy of this
thesis.

This thesis is mainly based on different joint works with Thomas Brihaye,
Véronique Bruyère, Jean-François Raskin, Nathan Thomasset and Marie van
den Bogaard [BBGR18, BBGR20, BBG+19, BBG+20, BBGT19, BG20], and
on [Goe20].

In the previously cited papers, we have considered multiplayer games equip-
ped with specific objective functions (including Boolean games with prefix-
independent objective functions, qualitative Reachability games, Safety games
and quantitative Reachability games). Most of these papers follow the same
scheme: we provide an ad hoc characterization of equilibrium depending on
the nature of the equilibrium considered, and the objective function; and then
we exploit this characterization in order to obtain algorithms related to these
equilibria. In this document, in order to obtain a uniform presentation of
those characterizations, we decided to provide general characterizations. In
this way the characterizations originally provided in our papers can be seen as
instantiations of those general characterizations.

Let us now provide our main contributions, more details are given at the
beginning of each part or chapter.

In this thesis, we consider multiplayer turn-based games played on graphs
equipped with qualitative or quantitative objectives.

Characterizations of equilibria outcomes A natural question which can
arise when studying equilibria is: “Does there exist a Nash equilibrium in
this game such that, if each player complies with the equilibrium, each player
satisfies his objective?”. In order to answer the latter question, it may be
sufficient to check the existence of a play which is proved to be the outcome of
a Nash equilibrium and such that each player satisfies his objective along it.
Therefore, the following question arise “For a given kind of equilibrium, is it
possible to exactly characterize the set of equilibrium outcomes in a game?”.
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Equilibrium characterizations has already been investigated in the litera-
ture, for instance in [BBMR15, FKM+10, FP17, BMR14, Bru17]. In the thesis,
we continue this line of research by providing characterizations based on the
notion of λ-consistent play. A labeling function λ is a function that assigns a
value to each vertex of the game graph. These values impose constraints on
the play in such a way that, given a well-defined labeling function λ, a play
which satisfies the constraints given by λ is the outcome of an equilibrium in
the studied game. We formally introduce this notion in Part II.

In Chapter 6, we show how, from the notion of values in zero-sum games,
we are able to obtain a labeling fonction Val∗ which characterizes the set of
outcomes of Nash equilibria in certain kinds of games with certain conditions
on the players’ cost functions. While this characterization was already known
(e.g., [Bru17]), it was not explained, up to our knowledge, how to adapt it
to Reachability games. We provide such a characterization in Section 6.2.
Moreover, if a play is a lasso and satisfies the criterion given by the charac-
terization, we prove that there exists a finite-memory Nash equilibrium which
has this play as outcome.

In Chapter 7, we provide a general approach to define a labeling function
λ∗ which allows, under some conditions on the game, to characterize the set of
outcomes of weak SPEs in a given game. This labeling function λ∗ is obtained
from an iterative procedure that we assume reaches a fixpoint. We also intro-
duce the notion of (good) symbolic witness. Roughly speaking, a good symbolic
witness is a finite set of plays of the game which satisfy some “good properties”
in such a way that if we have a good symbolic witness, we are able to build a
weak SPE. Moreover, if each play in the good symbolic witness is a lasso, we
provide an upper bound on the needed memory size of the weak SPE built from
this good symbolic witness. Then we explain how from these characterizations,
we are able to characterize the set of outcomes of weak SPEs in Boolean games
with prefix-independent gain functions, in qualitative and quantitative Reach-
ability games and in Safety games. Finally, since the notions of weak SPE
and SPE are equivalent in qualitative and quantitative Reachability games, we
obtain from these latter characterizations, an SPE outcome characterization
for qualitative and quantitative Reachability games.

Our characterizations have allowed us to obtain several complexity results
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of different decision problems related to the existence of relevant equilibria.
We detail those results in the following paragraphs.

Deciding the existence of relevant equilibria As already mentioned,
different equilibria may coexist in the same game. It is the reason why in
Part III we study different decision problems related to the existence of relevant
equilibria in a game.

In our works we have mainly focused on the constrained existence problem
(CEP) but in the particular case of Reachability games we have chosen to go
further by considering the upper threshold decision problem, the social welfare
decision problem and the Pareto optimal decision problem. The constrained
existence problem is the following: given a game, an upper threshold and
a lower threshold for each player, decide if there exists an equilibrium such
that the cost of each player lies between the lower and the upper thresholds.
The upper threshold decision problem is the same as the constrained existence
problem but without lower thresholds. The main idea behind the social welfare
decision problem is to maximize the number of players that reach their target
set and to minimize the sum of their costs. With the Pareto optimal decision
problem our aim is to decide the existence of an equilibrium with a cost profile
that is Pareto optimal in the set of all possible cost profiles in the studied
game.

In Chapter 9, we consider Boolean games with prefix-independent objective
functions, we begin by providing a naive algorithm that decides the constrained
existence problem of weak SPEs in these games. Then we prove that the
CEP is (i) NP-complete for games with co-Büchi, Parity, Muller, Streett and
Rabin objectives and (ii) P-complete for games with Explicit Muller and Büchi
objectives. In Chapter 10, we consider qualitative Reachability games and
Safety games. In these settings, we prove that the CEP of weak SPEs and SPEs
is PSPACE-complete. In Chapter 11, we prove that the CEP of weak SPEs
and SPEs in quantitative Reachability games is PSPACE-complete. Finally,
in Chapter 12, we mainly focus on quantitative Reachability and we prove
that: (i) for NEs: the upper threshold decision problem and the social welfare
decision problem are NP-complete, while the Pareto optimal decision problem
is NP-hard and belongs to ΣP

2 ; (ii) for SPEs: the upper threshold, social
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welfare and Pareto optimal decision problems are PSPACE-complete. We also
briefly mention the qualitative setting and provide upper bounds on the needed
size memory of equilibria. All these results are summarized in Tables 1.1-1.4.

Table 1.1: Complexity classes of the CEP of weak SPEs for classical prefix-
independent qualitative objectives

weak SPE Expl. Muller Büchi Co-Büchi Parity Muller Rabin Streett

P-complete × ×
NP-complete × × × × ×

Table 1.2: Complexity class of the CEP of weak SPEs and SPEs in qualitative
Reachability, Safety and quantitative Reachability games

qual. Reach Safety quant. Reach
weak SPE SPE weak SPE SPE weak SPE SPE

PSPACE-c × × × × × ×

Table 1.3: Complexity classes for upper threshold, social welfare and Pareto
optimal decision problems.

Complexity
Qualitative Reach. Quantitative Reach.
NE SPE NE SPE

Upper threshold NP-c [CFGR16, Umm05] PSPACE-c NP-c PSPACE-c
Social welfare NP-c PSPACE-c NP-c PSPACE-c
Pareto opti. NP-h/ΣP

2 PSPACE-c NP-h/ΣP
2 PSPACE-c

Table 1.4: Memory results for upper threshold, social welfare and Pareto op-
timal decision problems.

Memory
Qualitative Reach. Quantitative Reach.
NE SPE NE SPE

Upper threshold Polynomial [CFGR16] Exponential Polynomial Exponential
Social welfare Polynomial Exponential Polynomial Exponential
Pareto opti. Polynomial Exponential Polynomial Exponential

Application to multiplayer timed games In Part IV, we consider mul-
tiplayer turn-based timed games with qualitative Reachability objectives to-
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gether with the concept of SPE. We focus on the constrained existence prob-
lem of SPEs: given a timed game, we want to decide whether there exists an
SPE where some players have to win and some other ones have to lose. The
main result of this part is that the constrained existence problem of SPEs is
EXPTIME-complete for qualitative Reachability timed games.

1.3 Related Works

We present in this section some related works. This list is obvioulsy not ex-
haustive.

(Very) Weak SPEs The restricted class of deviating strategies used in very
weak SPEs is a well-known notion that for instance appears with the one-step
deviation property in the Folk theorem for infinitely repeated game [OR94].
Weak SPEs and very weak SPEs are equivalent notions, but there are games
for which there exists a weak SPE but no SPE [BBMR15]. Nevertheless,
(very) weak SPEs and SPEs are equivalent for quantitative and qualitative
Reachability games, an important property used in the proofs of [BBMR15]
and of this document. The equivalence between SPEs and very weak SPEs is
also implicitly used as a proof technique in a continuous setting in [FL83] and
in a lower-semicontinuous setting in [FKM+10].

In [BRPR17], general conditions are given that guarantee the existence of
a weak SPE. It follows that there always exists a weak SPE for games where
players use a prefix-independent or finite range cost function.

Characterizations of equilibria and fixpoint techniques In [Bre12],
Brenguier provides an outcome characterization of Nash equilibria in concur-
rent games, while in [BMR14] a characterization of outcomes of secure equilib-
ria in the restricted case of two-player games can be found. Notice that in this
latter paper, they also consider the constrained existence problem of secure
equilibria and prove it is decidable for games equipped with some kinds of ob-
jective functions. Recently, authors in [BRvdB21] provide a characterization
of all the subgame perfect equilibria in games with mean-payoff objectives.

Fixpoint techniques are used in several papers to establish the existence
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of (weak) SPEs in some classes of games like [FKM+10, BBMR15, BRPR17].
However they cannot be used in our context to get the PSPACE complexity
result of the constrained existence problem of (weak) SPEs in quantitative
Reachability games.

Existence of relevant equilibra Regarding the constrained existence prob-
lem and the upper threshold decision problem, for NEs, it is shown to be
NP-complete in qualitative Reachability games in [CFGR16] and in weighted
concurrent Reachability games [KLST12], notice that null weights on the edges
are allowed in [KLST12]. Notice that in [Umm08], variants of these problems
for games with Streett, Parity or co-Büchi winning conditions are shown NP-
complete and decidable in polynomial time for Büchi conditions. In [GU08,
Umm06], a tree automata-based algorithm is given to decide the constrained
existence problem of SPEs in graph games with ω-regular objectives defined
by Parity conditions. A complexity gap is left open: this algorithm executes in
EXPTIME and NP-hardness of the decision problem is proved. Quantitative
Reachability objectives are investigated in [BBMR15] where it is proved that
the constrained existence problem for weak SPEs and SPEs is decidable, but
its exact complexity is left open.

Regarding the social welfare decision problem, in the setting of games
played on matrices, deciding the existence of an NE such that the expected so-
cial welfare is at most k is NP-hard [CS03]. Moreover, in [BMS14] it is shown
that deciding the existence of an NE which maximizes the social welfare is
undecidable in concurrent games in which a cost profile is associated only with
terminal nodes.

Regarding the Pareto optimal problem, in the setting of zero-sum two-
player multidimensional mean-payoff games, the Pareto-curve (the set of max-
imal thresholds that a player can force) is studied in [BR15] by giving some
properties on the geometry of this set. The authors provide a ΣP

2 algorithm
to decide if this set intersects a convex set defined by linear inequations.

Regarding the memory, it is shown in [BDS13] that there always exists an
NE with polynomial memory in quantitative Reachability games, without any
constraint on the cost of the NE. It is shown in [Umm06] that, in multiplayer
games with ω-regular objectives, there exists an SPE with a given gain profile
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if and only if there exists an SPE with the same gain profile but with finite
memory.

Notions of rationality Other notions of rationality and their use for reac-
tive synthesis have been studied in the literature: rational synthesis in coopera-
tive [FKL10] and adversarial [KPV14] setting, and their algorithmic complexity
has been studied in [CFGR16]. Extensions with imperfect information have
been investigated in [FGR18]. Synthesis rules based on the notion of admissi-
ble strategies have been studied in [Ber07, BRS14, BRS15, BPRS16, BJP+18].

Notice that the related works for timed games are provided in Part IV.

1.4 Outline

This document is mainly divided into six parts.

Part I gives a brief overview of necessary definitions and some results about
games played on graphs.

Part II provides the characterizations of outcomes of equilibria.

Part III provides the complexity classes of the problems we have considered
in order to decide the existence of a relevant equilibrium in a game.

Part IV considers the model of multiplayer turn-based timed games with
qualitative Reachability objectives. Since this model is different from
the model studied in the rest of this document, we aim to keep this part
as self-contained as possible to allow its reading independently from the
others.

Part V briefly concludes this thesis by providing some possible future works.

Appendices The purpose of these appendices is twofold: (i) in Appendix A,
we provide the characterization of Boolean games with prefix-independent
objective functions, based on gain profiles of weak SPEs, that we have
presented in [BBGR18]; and (ii) in order to ease the reading of Part III
and Part IV, we have chosen to relegate some of the (technical) proofs
in Appendix B.
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CHAPTER 2

BACKGROUND

This chapter is devoted to introducing the general background we use through-
out this document.

We are interested in games played on graphs. Such a game is equipped with
an arena: a finite set of players, a (finite) set of vertices partitioned between
the players and a set of edges. A play in such a game is as follows: a token is
placed on a vertex, the player who owns this vertex moves the token through
an outgoing edge. The token is in a new vertex and this procedure is repeated
infinitely often leading to an infinite path in the game graph.

Additionally, each player has an objective that he wants to achieve. One
may consider qualitative objectives or quantitative objectives. With a qualita-
tive objective either a player achieves his objective or not. For example, if a
player wants to reach a given vertex in the game graph, either he reaches it or
not, no matter the number of vertices he has to visit before reaching it. With a
quantitative objective, a player has a cost (resp. gain) function that he wants
to minimize (resp. maximize). In the context of the previous example, the
player does not only want to reach the given vertex, he wants to do it as soon
as possible.

The behavior of the players may be adversarial or not. In the setting of two-
player zero-sum games, the objectives of the two players are antagonistic while
in the setting of multiplayer games the objectives of the players (potentially
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more than two players) are not necessarily antagonistic. Once a game is fixed
we aim at studying the players’ “rational behiavor”, this might be done through
the principle of solution concepts. Depending on the kind of studied game,
different solutions may be considered, for example winning strategies, optimal
strategies, Nash equilibria, and so on.

We formalize all these notions in the next sections. The notations and
definitions roughly follow those of [BBGR18, BBGT19, BBG+19, Goe20] some
of them are inspired by those of [De 13].

2.1 Arena and strategies

In this section we introduce the main definitions and notations related to the
notion of arena, plays, strategies and game played on a graph.

Definition 2.1.1 (Arena). An (finite) arena A is a tuple A =

(Π, V, E, (Vi)i∈Π) where

• Π is a finite set of players;

• G = (V,E) is a (finite) directed graph with V the set of vertices and
E ⊆ V × V the set of edges. Moreover, for each v ∈ V there exists
v′ ∈ V such that (v, v′) ∈ E (i.e., each vertex has at least one outgoing
edge);

• (Vi)i∈Π is a partition of V between the players. If v ∈ Vi for some i ∈ Π

it means that the vertex v is owned/controlled by Player i.

Since the set of players is finite we can number them and assume that
Π = {1, . . . , n}, for some n ∈ N. Thus we often call them Player 1, Player 2,
. . . Moreover, the set of vertices is partionned between the players and they
play alternately. This kind of game is called a turn-based game.

Example 2.1.2. In Figure 2.1 we consider the arena A = (Π, V, E, (Vi)i∈Π)

where:

• Π = {1, 2};
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• V = {v0, v1, v2, v3, v4};

• E = {(v0, v1), (v0, v2), (v2, v3), (v2, v4), (v3, v0), (v4, v0), (v1, v0)};

• V1 = {v1, v2, v3, v4} (the rounded vertices) and V2 = {v0} (the rectangu-
lar vertices).

When we will consider a game with two players, we will keep the convention
that the vertices owned by Player 1 (resp. Player 2) are the rounded vertices
(resp. rectangular vertices).

v0v1 v2

v3

v4

Figure 2.1: An arena A where Player 1 (resp. Player 2) owns rounded vertices
(resp. rectangular vertices).

Remark 2.1.3. Notice that in Definition 2.1.1 we assume that the game graph is
finite, this will be the case throughout this document except in Part IV where
the number of vertices may be infinite.

Moreover, we assume, except in Part IV, that the graph game is not a
directed multigraph. In a directed multigraph, if E is the set of edges, then the
function e : E → V × V which assigns to each edge its source and its target
vertices is not necessarily injective.

We will explicitly exhibit these differences when it is needed.

Remark 2.1.4 (Weighted arena). When we want to express quantitative spec-
ifications (see Section 2.2.2), it is sometimes useful to equipped the arena A

with a weight function wi : E → Z for each player i ∈ Π. In this case, we write
A = (Π, V, E, (Vi)i∈Π, (wi)i∈Π) and we call A a weighted arena.

Plays and histories When a token is moved by the players along the edges
of the arena A = (Π, V, E, (Vi)i∈Π), it leads to an infinite sequence of vertices
called a play. Formally, a play ρ ∈ V ω is such that if ρ = ρ0ρ1 . . ., then for all
k ∈ N (ρk, ρk+1) ∈ E. A history h ∈ V ∗ is either the empty sequence ε or a
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finite sequence h = h0h1 . . . hk for some k ∈ N such that for each 0 ≤ n ≤ k−1,
(hn, hn+1) ∈ E. The length |h| of h 6= ε is the number k of its edges. We depict
the set of plays (resp. histories) in A by Plays (resp. Hist). When it is not
clear from the context which arena is considered, we highlight it by PlaysA

(resp. HistA). If h = h0 . . . hk for some k ∈ N is a history, we write First(h)1

to denote the first vertex h0 of h, in the same way Last(h) denotes the last
vertex hk of h. The set Histi depicts the set of histories which end with a vertex
owned by Player i, i.e., Histi = {h ∈ Hist \{ε} | Last(h) ∈ Vi}. Moreover, if
h = h0 . . . hk, for some k ∈ N, is an history and v ∈ V is a vertex such that
(hk, v) ∈ E, we denote by hv the history h0 . . . hkv. Finally, given a play
ρ ∈ Plays, if there exist h, ` ∈ Hist such that h` ∈ Hist and ρ = h`ω, we say
that ρ is a lasso. Notice that ` is not necessarily a simple cycle. Moreover,
in the rest of this document, we sometimes refer to the length L of a lasso
ρ ∈ Plays(v) or to the fact that this length is bounded by a value L. By that
we mean that there exist h ∈ Hist(v) and ` ∈ Hist such that (i) h` ∈ Hist(v);
(ii) ρ = h`ω and (iii) |h`| = L (resp. ≤ L). In particular, it means that the
lasso ρ has a finite representation of size L (resp. at most L).

We denote by Succ(v) = {v′|(v, v′) ∈ E} the set of successors of v, for
v ∈ V , and by Succ∗ the transitive closure of Succ. If ρ = ρ0ρ1 . . . is a play
in A, then for each k ∈ N, ρ≤k denotes the history ρ0 . . . ρk and ρ≥k denotes
the play ρkρk+1 . . .. A prefix (resp. proper prefix ) h′ of a history h = h0 . . . hk,
with k ∈ N and h 6= ε, is a history h0 . . . h`, with ` ≤ k (resp. ` < k), denoted
by h′ ≤ h (resp. h′ < h). In the same way, a prefix h of a play ρ is denoted by
h < ρ.

Let S ⊆ V be a subset of vertices of the arena A and let ρ ∈ Plays be a play
in A, we say that the play ρ = ρ0ρ1 . . . reaches/visits S if there exists k ∈ N
such that ρk ∈ S. If S = {v} for some v ∈ V , we say that ρ reaches/visits v
(instead of {v}) if there exists k ∈ N such that ρk = v. Moreover, we denote
by Occ(ρ) the set of vertices visited along ρ, i.e., Occ(ρ) = {v ∈ V | ∃k ∈
N, ρk = v}. These notions may be easily adapted for histories. We also define
the set Inf(ρ) as the set of vertices which are visited infinitely often, that is
Inf(ρ) = {v ∈ V | ∀k ∈ N, ∃n ≥ k, ρn = v}.

1We can use First(ρ) for all plays ρ ∈ Plays in the same way as for histories.
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Srategies A strategy of Player i, i ∈ Π, is a function σi : Histi → V which
assigns to each history h ∈ Histi a successor v ∈ V such that (Last(h), v) ∈ E.
Intuitively, it represents the choice of Player i when it is his turn to play and
he can choose the next move taking into acount the past history h. The set of
strategies of Player i, i ∈ Π, is denoted by Σi.

A strategy automaton [Umm05] for a strategy σi of Player i in the arena
A = (Π, V, E, (Vi)i∈Π) is a tupleMi = (M,m0, δ, ν) such that:

• M is a (non-empty) finite set of memory states;

• m0 ∈M is the initial memory state;

• δ : M × V →M is a memory transition function;

• ν : M × Vi → V with (v, ν(m, v)) ∈ E for all m ∈ M and v ∈ V is the
next-choice function.

The transition function δ may be extended to a function δ∗ : M×Hist→M

defined by δ∗(m, ε) = m for all m ∈ M and δ∗(m,hv) = δ(δ∗(m,h), v) for all
m ∈M and hv ∈ Hist. In this way, the strategy σMi encoded byMi is defined
as follows: σMi(hv) = ν(δ∗(m0, h), v) for all hv ∈ Histi.

A strategy σi of Player i is a finite-memory strategy if there exists a strategy
automaton Mi such that σMi = σi. Moreover, we say that the memory size
of σi is at most equal to |M | where M is the set of memory states ofMi. A
particular kind of finite-memory strategies are the strategies for which |M | = 1,
these strategies are called memoryless strategies (or positional strategies). A
strategy σi of Player i is memoryless if for all hv, h′v′ ∈ Hist, (v = v′ =⇒
σi(hv) = σi(h

′v′)). Thus with a memoryless strategy σi, Player i only needs
to consider the current vertex to make his choice, that is we can assume that
σi : Vi → V .

A play ρ = ρ0ρ1 . . . is said consistent with a strategy σi of Player i if for
all k ∈ N such that ρk ∈ Vi, we have that ρk+1 = σi(ρ0 . . . ρk). This notion
can easily be extended to histories.

A strategy profile σ = (σi)i∈Π is a tuple of strategies, one for each player.
It is called positional (resp. finite-memory) if for each i ∈ Π, σi is positional
(resp. finite-memory). A play ρ is said consistent with a strategy profile σ, if
ρ is constistent with each strategy σi, i ∈ Π. When one fixes a strategy profile
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σ and an inital vertex v ∈ V , there exists only one play, beginning in v, which
is consistent with σ from v. This play is called the outcome of σ from v and is
denoted by 〈σ〉v. If we want to highlight the strategy of Player i, i ∈ Π, in a
strategy profile σ, we write (σi, σ−i) where σ−i = (σj)j∈Π\{i} and −i = Π\{i}
denotes the set of all players except Player i. If σ′i 6= σi for some i ∈ Π, we say
that σ′i is a deviating strategy of Player i w.r.t σ.

Example 2.1.5. Let us come back to the arena A depicted in Example 2.1.2.
We define a strategy σ1 of Player 1 and a strategy σ2 of Player 2. The strategy
σ1 : V1 → V is defined by

σ1(v) =

v0 if v ∈ {v1, v3, v4}

v3 if v = v2

.

This strategy is a memoryless strategy.

The strategy σ2 : Hist2 → V is defined by

σ2(hv) =

v1 if |hv|v0 is even

v2 otherwise

where for all h′ = h′0 . . . h
′
k for some k ∈ N and for all v′ ∈ V , |h′|v′ = {n ∈

N | 0 ≤ n ≤ q and hn = v′} denotes the number of occurrences of v′ along
h′. The idea is that when a even number of v0 is visited along hv, Player 2

chooses to go to v1 and he chooses to go to v2 otherwise. This strategy is
a finite-memory strategy with memory size at most equal to 2. We describe
hereunder a strategy automatonM2 such that σM2 = σ2. See Figure 2.2 for a
graphical representation of the memory transition function δ ofM2. Formally,
δ : M × V →M is defined as follows:

δ(m, v) =


m1 if m = m0 and v = v0

m0 if m = m0 and v 6= v0

m0 if m = m1 and v = v0

m1 if m = m1 and v 6= v0

.

The next-choice function ν : M × V2 → V is defined as follows:
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m0 m1

v0

v0

v 6= v0 v 6= v0

Figure 2.2: The strategy automaton σM2 of Example 2.1.5.

ν(m, v) =

v1 if m = m0 and v = v0

v2 if m = m1 and v = v0

.

The outcome of (σ1, σ2) from v0 is the play 〈σ1, σ2〉v0 = (v0v1v0v2v3)ω.
Indeed, if 〈σ1, σ2〉v0 = ρ0ρ1 . . ., we have that: ρ0 = v0, ρ1 = σ2(v0) =

ν(δ∗(m0, ε), v0) = ν(m0, v0) = v1, ρ3 = σ2(v0v1v0) = ν(δ∗(m0, v0v1), v0) =

ν(m1, v0) = v2 where δ∗(m0, v0v1) = δ(δ∗(m0, v0), v1) = δ[δ(δ∗(m0, ε), v0), v1] =

δ(δ(m0, v0), v1) = δ(m1, v1) = m1, and so on.

Games played on graphs To complete the definition of a game played on a
graph, we need to define what is the objective of each player. In this document,
all the objectives that we consider may be expressed thanks to an objective
function Obj : Plays→ R∪{−∞,+∞}. If Obji is the objective function which
represents the objective of Player i, then Obji assigns a value to each play in
the arena A and Player i aims at optimizing this value: either maximizing or
minimizing. We detail this notion of objective function in Section 2.2.

A game played on a graph is an arena A equipped with a profile of objective
functions Obj = (Obji)i∈Π, one for each player.

Definition 2.1.6 (Game played on a graph). A game played on a graph G
is a tuple G = (A,Obj) where

• A = (Π, V, E, (Vi)i∈Π) is an arena (see Definition 2.1.1);

• Obj = (Obji)i∈Π is a profile of objective functions, such that for each
i ∈ Π, Obji : Plays → R ∪ {−∞,+∞} represents the objective of
Player i.

Since we only consider games played on graphs in this document, we refer
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to the notion of a game played on a graph by the term “game”.
When one considers games played on graphs, one often fixes a particular

initial vertex and one assumes that the token is placed in this particular vertex
at the beginning of all plays. This kind of games is called an initialized game
and is denoted by (G, v0) where v0 ∈ V is the fixed initial vertex in the arena
A. In this document, the initial vertex is often denoted by v0.

Definition 2.1.7 (Initialized game). An initialized game (G, v0) is a tuple
(G, v0) = (A,Obj) where:

• G is a game as in Definition 2.1.6;

• v0 ∈ V is a fixed initial vertex.

In an initialized game (G, v0), the plays begin in v0 and we denote this
particular set of plays by Plays(v0) = {ρ ∈ Plays | First(ρ) = v0}. We
can define the set Hist(v0) and Histi(v0) in the same way. Additionally, the
strategies of the players can be defined only on the histories beginning in v0.
That is, for a strategy σi of Player i: σi : Histi(v0) → V . In particular, for a
memoryless strategy we can define σi only on the reachable vertices of Player i
from v0, that is σi : Vi ∩ Succ∗(v0) → V . In this case, for all i ∈ Π, as the
definition of a strategy σi ∈ Σi (resp. a strategy profile σ) depends on the
initial vertex, when it is not clear from the context we sometimes highlight
that σi is a strategy (resp. σ is the strategy profile) in (G, v0).

When a strategy profile σ is fixed in the initialized game (G, v0), we called
the outcome of σ from v0, i.e., 〈σ〉v0 , the outcome of σ in (G, v0).

Remark 2.1.8. In all this document, when we write G = (A,Obj) without
any precision, we assume that A = (Π, V, E, (Vi)i∈Π). We make the same
assumption for an initialized game (G, v0) and for an arena A.

2.2 Objectives

In the previous section (Section 2.1), we have defined a game G as (i) an arena
A equipped with (ii) an objective function Obji : Plays → R ∪ {−∞,+∞}
for each Player i, i ∈ Π. If Player i, i ∈ Π, aims at maximizing his objective
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function, this objective function can be seen as a gain for Player i. Conversly,
if Player i, i ∈ Π, aims at minimizing his objective function, this objective
function can be seen a cost for Player i. We sometimes write Gaini (resp.
Costi) if the function Obji represents a gain (resp. a cost), we call Gaini a
gain function (resp. cost function).

Remark 2.2.1. Notice that if the objective of Player i is to maximize his gain
function Gaini, it is equivalent to say that he wants to minimize his cost
function Costi = −Gaini. And vice versa if Player i wants to minimize his
cost function Costi.

Let us fix a game G = (A,Obj). If for all i ∈ Π, Obji is a gain function
Gaini, we often write G = (A,Gain) with Gain = (Gaini)i∈Π. For all ρ ∈ Plays,
Gaini(ρ) represents the amount that Player i earns for the play ρ. Moreover,
we say that (Gaini(ρ))i∈Π is the gain profile of the play ρ and is denoted by
Gain(ρ).

In the same way, if for all i ∈ Π, Obji is a cost function Costi, we often
write G = (A,Cost) with Cost = (Costi)i∈Π. For all ρ ∈ Plays, the value
Costi(ρ) represents the amount that Player i loses for the player ρ. Addition-
ally, (Costi(ρ))i∈Π is the cost profile of the play ρ and is denoted by Cost(ρ).

Finally, for all x ∈ (R ∪ {−∞,+∞})|Π|, for all i ∈ Π, xi depicts the ith
component of x. For all x ∈ (R∪ {−∞,+∞})|Π| and y ∈ (R∪ {−∞,+∞})|Π|,
we write x ≤ y (resp. x < y) if and only if for all i ∈ Π, xi ≤ yi (resp. xi < yi).

2.2.1 Qualitative objectives

When the objective of a player is to satisfy (or to achieve) a property without
any quantitative consideration, this objective is called a qualitative objective. In
other words, with a qualitative objective either the player achieves his objective
or not. Commonly [GTW02] these objectives are described by a subset of plays
Win ⊆ Plays called the set of winning plays. Given Wini ⊆ Plays the set of
winning plays of Player i, i ∈ Π, if a play ρ belongs to Wini we say that ρ is
winning for Player i and that this latter player wins. Otherwise, if the play ρ
does not belong to Wini, we say that Player i loses along ρ.

Some classical qualitative objectives studied in the litterature are: (qual-
itative) Reachability, Safety, Büchi, co-Büchi, Muller, Explicit Muller, Parity,
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Streett and Rabin objectives.

Definition 2.2.2 (Classical qualitative objectives). Let A =

(Π, V, E, (Vi)i∈Π) be an arena. The set Wini ⊆ Plays describes a
(qualitative) Reachability, Safety, Büchi, Co-Büchi, Parity, Explicit Muller,
Muller, Rabin, or Streett objective for Player i if and only if Wini is
composed of the plays ρ satisfying:

• (qualitative) Reachability : given a target set F ⊆ V , Occ(ρ) ∩ F 6= ∅;

• Safety : given F ⊆ V , Occ(ρ) ∩ F = ∅;

• Büchi : given a target set F ⊆ V , Inf(ρ) ∩ F 6= ∅;

• Co-Büchi : given F ⊆ V , Inf(ρ) ∩ F = ∅;

• Parity : given a coloring function c : V → {1, . . . , d}, max(Inf(c(ρ)))a

is even;

• Explicit Muller : given F ⊆ 2V , Inf(ρ) ∈ F ;

• Muller : given a coloring function c : V → {1, . . . , d}, and F ⊆ 2c(V ),
Inf(c(ρ)) ∈ F ;

• Rabin: given (Gj , Rj)1≤j≤k a family of pair of sets Gj , Rj ⊆ V ,
there exists j ∈ 1, . . . , k such that Inf(ρ)∩Gj 6= ∅ and Inf(ρ)∩Rj = ∅;

• Streett : given (Gj , Rj)1≤j≤k a family of pair of sets Gj , Rj ⊆ V ,
for all j ∈ 1, . . . , k, Inf(ρ) ∩Gj = ∅ or Inf(ρ) ∩Rj 6= ∅.

aWhere c(ρ) = c(ρ0)c(ρ1) . . . c(ρn) . . ..

From the set of winning plays to the objective function We now
explain how, for each i ∈ Π, we obtain a gain function Gaini : Plays→ {0, 1}
from Wini. For each player i ∈ Π, let Wini ⊆ Plays be his set of winning plays,
the gain function Gaini : Plays → {0, 1} is defined such that Gaini(ρ) = 1

(resp. Gaini(ρ) = 0) if and only if ρ ∈Wini (resp. ρ 6∈Wini).

In the rest of this document we use interchangeably either Wini or Gaini
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(associated with Wini) to denote the qualitative objective of Player i. Notice
that when we equip a player i with a gain function Gaini, we implicitly assume
that the informations needed to define the gain function are provided. That
is:

• For (qualitative) Reachability, Safety, Büchi, co-Büchi objectives, the set
Fi ⊆ V is given;

• For Parity and Muller objectives, the coloring function ci is given;

• For Explicit Muller and Muller objectives, the set Fi ⊆ 2V is given;

• For Rabin and Stress objectives, the familliy (Gij , R
i
j)1≤j≤k such that

Gij , R
i
j ⊆ V is given.

Remark 2.2.3. In the rest of this document, we sometimes need to refer to the
gain functions associated with particular qualitative objective functions. We
define:

• qR : Plays→ {0, 1} to denote the gain function associated with a quali-
tative reachability objective;

• Safe : Plays→ {0, 1} to denote the gain function associated with a safety
objective;

• Buchi : Plays → {0, 1} to denote the gain function associated with a
Büchi objective.

Remark 2.2.4. Even if it is less intuitive, in Section 2.3.1, we sometimes repre-
sent a qualitative objective thanks to a cost function rather than a gain func-
tion. With this convention, Costi : Plays → {0, 1} is such that Costi(ρ) = 1

(resp. Costi(ρ) = 0) if and only if ρ 6∈Wini (resp. ρ ∈Wini).

Boolean Games A (initialized) game is called a (initialized) Boolean game,
if each player has a qualitative objective.

Definition 2.2.5 (Boolean game). Let G = (A,Obj) be a game, if for each
i ∈ Π, Obji is a gain function Gaini : Plays → {0, 1} then G (resp. (G, v0))
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is a Boolean game.

Thus, in a Boolean game, each player aims at maximizing his gain. For
O ∈ {qualitative Reachability, Safety, Büchi, co-Büchi, Parity, Explicit Muller,
Muller, Rabin, Streett}, we say that the Boolean game G is an O game if each
player has an O objective. For example, if O = Büchi, a Büchi game is a game
where all players have a Büchi objective.

In the rest of this document, a qualitative reachability game is denoted
G = (A, qR, (Fi)i∈Π) with qR = (qRi)i∈Π and for all i ∈ Π, Fi ⊆ V is
the target set of Player i. In the same way, a safety game is denoted G =

(A, Safe, (Fi)i∈Π) with Safe = (Safei)i∈Π and for all i ∈ Π, Fi ⊆ V is the set
of vertices that Player i wants to avoid. Morever, a Büchi game is denoted
G = (A,Buchi, (Fi)i∈Π) with Buchi = (Buchii)i∈Π and for all i ∈ Π, Fi ⊆ V is
the target set of Player i.

Example 2.2.6. We consider the initialized Boolean game (G, v0) = (A,Gain)

with the arena A given in Example 2.1.2 and Gain = (qR1,Buchi2). The
objective of Player 1 is a qualitative objective given by F1 = {v1, v3} and the
objective of Player 2 is a Büchi objective given by F2 = {v1}. Thus, Player 1

wants to reach (at least once) either the vertex v1 or the vertex v3 while Player 2

wants to reach vertex v1 infinitely often.
We illustrate this game on Figure 2.3, the gray vertex represents F1 and

double circled vertices represent F2.

v0v1 v2

v3

v4

Figure 2.3: Initialized Boolean game (G, v0) where F1 = {v1, v3} and F2 =

{v1}.

The play v0v2v4(v0v2v3)ω is winning for Player 1 but not for Player 2.
Indeed, Occ(ρ) = {v0, v2, v3, v4} and Inf(ρ) = {v0, v2, v3}, thus Occ(ρ)∩F1 6= ∅
and Occ(ρ) ∩ F2 = ∅. It follows that Gain(ρ) = (qR1(ρ),Buchi2(ρ)) = (1, 0).
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2.2.2 Quantitative objectives

In the previous section, we have seen how, thanks to qualitative objectives,
we are able to express if a property is satisfied or not. Sometimes this binary
point of view is too restrictive and we want to express quantitative specifica-
tions. For example, we not only want to know that a player reaches a given
subset of vertices (qualitative reachability), we want to count the amount of
energy it takes (quantitative reachability). In order to express quantitative
specifications, we associate a quantitative objective to each player. That is, for
each i ∈ Π: Obji : Plays→ R ∪ {−∞,+∞}2.

There exists a lot of different quantitative objectives in the literature, in
this document we choose to mainly focus on quantitative reachability, weighted
reachability, discounted-sum and mean-payoff objectives.

When a player has a quantitative/weighted reachability objective he aims
at reaching a subset of vertices F (his target set) as soon as possible. In the
case of quantitative reachability objective, given a play ρ we only count the
number of edges between the initial vertex and the first vertex v along ρ such
that v ∈ F . If such a vertex does not exist, we assume that the player has to
pay a cost of +∞. In the case of weighted reachability objective, given a play
ρ, we agregate the sum of the weights on the edges from the initial vertex to
the first vertex v along ρ such that v ∈ F . As for quantitative reachability, if
this vertex v does not exist, the player has a cost equal to +∞.

With a reachability objective (quantitative or weighted), when the player
reaches a vertex of his target he does not care about what happens in the
future. Indeed their next actions (and those of the other players) do not affect
his cost. With a discounted-sum objective, there is no such moment when the
cost of the player will not change anymore. The weights on the edges along
the play are infinitly aggregated but additionally these weights are discounted
by a discount factor strictly between 0 and 1 which varies along the play.

A mean-payoff objective considers the limit of the means of the weights
along the play. Since this limit may not exist, we consider the lim sup of this
mean.

2 Notice that a qualitative objective can be seen as a quantitative objective.
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Definition 2.2.7. Given an (weighted) arena A = (Π, V, E, (Vi)i∈Π, (wi)i∈Π)

where, for each i ∈ Π, wi is the weigth function of Player i (see Remark 2.1.4).
Let i ∈ Π be a player, we define the following cost functions for Player i: for
all plays ρ = ρ0ρ1 . . . in A,

• Quantitative reachability objective: given a subset of vertices Fi ⊆ V

called the target set of Player i, QRi : Plays→ N∪ {+∞} is such that

QRi(ρ) =

k if k is the least index such that ρk ∈ F

+∞ if such k does not exist
.

• Weighted reachability objective: given a subset of vertices Fi ⊆ V

called the target set of Player i and the weight function wi : E → N0
a

of Player i, WRi : Plays→ N ∪ {+∞} is such that

WRi(ρ) =


∑k−1

n=0wi(ρn, ρn+1) if k is the least index st. ρk ∈ F

+∞ if such k does not exist
.

• Discounted-sum objective: given a discount factor λ ∈]0, 1[,
DSλi : Plays→ R is such that

DSλi (ρ) = (1− λ) ·
+∞∑
n=0

λn · wi(ρn, ρn+1).

• Mean-payoff objective: MPi : Plays→ R

MPi(ρ) = lim sup
k→+∞

∑k−1
n=0wi(ρn, ρn+1)

k
.

aIn this document, when we consider a weighted reachability objective, we assume that
the weights on the edges are in N0 = {1, 2, . . .}. This objective may also be defined with
negative weights, but we will explicitely precise it when it is the case in our examples.

Remark 2.2.8. A quantitative reachability objective is in particular a weighted
reachability objective with wi(e) = 1 for all e ∈ E.

As for qualitative objectives, when we equip a player i with a cost function
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Costi, we implicitly assume that:

• For quantitative reachability and weighted reachability objectives, the
target set Fi ⊆ V is given;

• For weighted reachability, discounted-sum and mean-payoff objectives,
the weight function wi is given;

• For the discounted-sum objective, the discount factor λ ∈]0, 1[ is given.

In the same way as for qualitative objectives, in a game G with arena
A, if each player has an objective O ∈ {quantitative reachability, weighted
reachability, discounted-sum, mean-payoff}, we say that the game is a O game.
For example, if O = quantitative reachability, it means that for all i ∈ Π,
Obji = QRi and we call the game a quantitative Reachability game.

In this case we often explicit the target sets and the weight functions as
follows:

• A quantitative Reachability game is denoted G = (A,QR, (Fi)i∈Π) with
QR = (QRi)i∈Π and for all i ∈ Π, Fi ⊆ V is the target set of Player i;

• A weighted Reachability game is denoted G = (A,WR, (Fi)i∈Π) with a
weighted arena A = (Π, V, E, (Vi)i∈Π, (wi)i∈Π), WR = (WRi)i∈Π and for
all i ∈ Π, Fi ⊆ V is the target set of Player i;

For the rest of this document, we generalize qualitative, quantitative and
weighted Reachability games thanks to the notion of Reachability games.

Definition 2.2.9 (Reachability game). A Reachability game is a game G =

(A,Reach, (Fi)i∈Π) with Reach = (Reachi)i∈Π and Fi ⊆ V is the target set
of Player i for all i ∈ Π and where Reach refers to qR, QR or WR if G is a
qualitative, quantitative or weighted reachability game respectively.

Example 2.2.10. Let us come back to the arena depicted in Figure 2.1 on
which we have added a weight function for each player (see Figure 2.4). A
tuple t ∈ N|Π| on an edge e ∈ E means that for each i ∈ Π, wi(e) = ti, if there
is no weight on an edge e ∈ E, we assume that wi(e) = (0, 0) for all i ∈ Π.
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v0v1 v2

v3

v4
(1, 2) (2, 1)

(3, 3)

Figure 2.4: Initialized game (G, v0) with quantitative objectives.

Let ρ = (v0v2v3)ω be a play in A = (Π, V, E, (Vi)i∈Π, (wi)i∈Π).

• Let us assume that both players have a quantitative/weighted reachabil-
ity objective and that the target set of Player 1 (resp. Player 2) is F1 =

{v3} (resp. F2 = {v1}). Then, we have that QR(ρ) = (QR1(ρ),QR2(ρ)) =

(2,+∞) and WR(ρ) = (WR1(ρ),WR2(ρ)) = (3,+∞).

2.2.3 Continuous and prefix-linear objectives

In Section 2.2.1 and Section 2.2.2 we define what is a qualitative or a quan-
titave objective and we provide some classical examples. In this section we
are interested in some properties that these objective functions may have. In
particular, we consider continuous and prefix-linear objective functions.

Continuous objective functions

We assume that the reader is familiar with the notion of topology on V ω: V
is endowed with the discrete topology and V ω with the product topology (see
e.g., [PP04]). The following definition explains what is a continuous objective
function.

Definition 2.2.11 (Continuous objective function). An objective function
Obji is continuous if whenever lim

n→+∞
ρn = ρ, we have that lim

n→+∞
Obji(ρn) =

Obji(ρ).

Remark 2.2.12. Let us comment the continuity of some of the objective func-
tions introduced in this section.
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1. For all λ ∈]0, 1[, the objective function DSλ : Plays→ R is a continuous
function.

2. We explicit an example which shows that the objective function MP

is not a continuous objective function. Let us consider the game with
only one player and such that its arena is depicted by the figure just
bellow. We assume that w1 : E → Z is such that for all e ∈ E such that
e 6= (v1, v1), we have that w1(e) = 0 and w1(v1, v1) = 1.

v0 v1

0

0

0 1

Let (ρn)n∈N be a sequence of plays in this arena such that for each n ∈ N,
ρn = vn+1

0 vω1 , that is the vertex v0 is repeated n+ 1 times and then the
vertex v1 is repeated infinitely often. This sequence converges to the play
vω0 but MP1(ρn) = 1 for all n ∈ N and MP1(vω0 ) = 0.

3. With the same example and by assuming that F1 = {v1}, we can prove
that the qualitative reachability objective function is not a continuous
function.

When we deal with a weighted/quantitative reachability objective, we can
transform the corresponding objective functions into real-valued cost func-
tions3 which are continuous. These new objective functions will be equivalent
for our purpose.

Proposition 2.2.13. Given a weighted arena A = (Π, V, E, (Vi)i∈Π, (wi)i∈Π)

with wi : E → N0, the function WRi can be transformed into a real-valued

3A real-valued objective function is an objective function which assigns a real value to
each play.
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and continuous function WR′i : Plays→ [0, 1]:

WR′i(ρ) =

1− 1
WRi(ρ)+1 if WRi(ρ) < +∞

1 otherwise
.

Prefix-linear objectives

In Part II, we state some results which hold for a particular class of games:
games with prefix-linear objectives. Thus in this section, we explain what is a
prefix-independent objective and a prefix-linear objective.

Let A be an arena, a prefix-independent objective is an objective such that
for all plays ρ ∈ Plays, the value of the objective function for ρ remains the
same even if we add/delete a finite prefix h to ρ.

Definition 2.2.14 (Prefix-independent objective). Let A be an arena, an
objective function Obji is prefix-independent in A if for all hv ∈ HistA and
ρ ∈ PlaysA(v) :

Obji(hρ) = Obji(ρ).

If the objective of Player i is given by a prefix-independent objective function,
we say that the objective is prefix-independent.

A prefix-linear objective function of Player i is an objective Obji such that
for all plays ρ in the arena A and all prefixes hv < ρ such that one can write ρ
as ρ = hρ′ with ρ′ ∈ Plays(v), we can split the value of the objective function
between the value of the prefix h and the value of the suffix ρ′. That is, there
exist a ∈ R and b ∈ R+ such that Obji(ρ) = a+ b ·Obji(ρ

′).

Definition 2.2.15 (Prefix-linear objective). Let A be an arena, an objective
function Obji is prefix-linear in A if for all hv ∈ HistA: there exists a(h, v) ∈
R and b(h, v) ∈ R+ such that for all ρ ∈ PlaysA(v) :

Obji(hρ) = a(h, v) + b(h, v) ·Obji(ρ).

If the objective of Player i is given by a prefix-linear objective function, we
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say that the objective is prefix-linear.

If an objective function Obji is prefix-linear and for all hv ∈ Hist, b(h, v)

is strictly greater than 0, then we say that Obji is strongly prefix-linear.

Definition 2.2.16 (Strongly prefix-linear objective). Let A be an arena, an
objective function Obji is strongly prefix-linear in A if for all hv ∈ HistA:
there exists a(h, v) ∈ R and b(h, v) ∈ R+

0 such that for all ρ ∈ PlaysA(v) :

Obji(hρ) = a(h, v) + b(h, v) ·Obji(ρ).

If the objective of Player i is given by a strongly prefix-linear objective func-
tion, we say that the objective is strongly prefix-linear.

Remark 2.2.17.

• Notice that a prefix-independent objective in A is a strongly prefix-linear
objective in A with a(h, v) = 0 and b(h, v) = 1 for all hv ∈ Hist.

• When an objective (function) is prefix-independent (resp. (strongly)
prefix-linear) in all A, we only say that this objective (function) is prefix-
independent (resp. (strongly) prefix-linear).

Example 2.2.18. We give some examples of prefix-independent and prefix-
linear objective functions.

• Büchi, co-Büchi, Parity, Explicit Muller, Muller, Rabin and Streett ob-
jectives are prefix-independent objectives.

• A mean-payoff objective is a prefix-independent objective.

• The qualitative reachability objectives and the safety objectives are prefix-
linear objectives.

• A discounted-sum objective is a prefix-linear objective. Indeed, given λ ∈
]0, 1[, and DSλi the discounted-sum objective of Player i, let hv ∈ Hist be
such that hv = h0 . . . hk, we take a(h, v) = (1− λ)

∑k−1
n=0 λ

nwi(hn, hn+1)
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and b(h, v) = λk. We have for all ρ ∈ Plays(v) that DSλi (hρ) = a(h, v) +

b(h, v) ·DSλi (ρ).

• A quantitative/weighted reachability objective is a prefix-linear objec-
tive. Given a weighted reachability objective WRi, let hv = h0 . . . hk,

– if there exists 0 ≤ ` ≤ k such that h` ∈ Fi, where Fi is the target
set of Player i, and if we assume that ` is the least index such that
h` ∈ Fi, we take a(h, v) =

∑`−1
n=0wi(hn, hn+1) and b(h, v) = 0 with

the convention that 0 ·+∞ = 0;

– otherwise we take a(h, v) =
∑k−1

n=0wi(hn, hn+1) and b(h, v) = 1.

We have for all ρ ∈ Plays(v), WRi(hρ) = a(h, v) + b(h, v) ·WRi(ρ).

Remark 2.2.19. Notice that qualitative, quantitative and weighted reachabil-
ity objectives as well as safety objective are prefix-linear objectives but not
strongly prefix-linear objectives.

We conclude this section by providing some properties of strongly prefix-
linear objectives.

Lemma 2.2.20. Given a game G = (A,Obj) such that Obji is strongly
prefix-linear in A for all i ∈ Π.
For all i ∈ Π, all hv ∈ Hist and for all ρ, ρ′ ∈ Plays(v):

(C1) Obji(ρ) ≥ Obji(ρ
′) =⇒ Obji(hρ) ≥ Obji(hρ

′);

(C2) Obji(ρ) > Obji(ρ
′) =⇒ Obji(hρ) > Obji(hρ

′).

Proof. Let G = (A,Obj) be a game such that Obji is strongly prefix-linear
for all i ∈ Π.
Let i ∈ Π be a player, hv ∈ Hist be a history and ρ, ρ′ be two plays beginning
in v. Since Obji is stronlgy prefix-linear, we have that there exist a(h, v) ∈ R
and b(h, v) ∈ R+

0 such that for all ρ̃ ∈ Plays(v), we have:

Obji(hρ̃) = a(h, v) + b(h, v) ·Obji(ρ̃). (2.1)

1. First, let us assume that Obji(ρ) ≥ Obji(ρ
′). Since b(h, v) ∈ R+

0 ,
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we have that a(h, v) + b(h, v) · Obji(ρ) ≥ a(h, v) + b(h, v) · Obji(ρ
′).

From (2.1) comes the result.

2. Second, let us assume that Obji(ρ) > Obji(ρ
′). Since b(h, v) ∈ R+

0 ,
we have that a(h, v) + b(h, v) · Obji(ρ) > a(h, v) + b(h, v) · Obji(ρ

′).
From (2.1) comes the result.

Even if qualitative, quantitative and weighted reachability objectives are
not strongly prefix-linear, it this clear that the property (C1) also holds for
those objectives. Moreover, if the target set of Player i is not reached along h,
property (C2) is also satisfied by reachability objectives.

Lemma 2.2.21. Given a Reachability game G = (A,Reach, (Fi)i∈Π).

(C1) For all i ∈ Π, all hv ∈ Hist and for all ρ, ρ′ ∈ Plays(v): Reachi(ρ) ≥
Reachi(ρ

′) =⇒ Reachi(hρ) ≥ Reachi(hρ
′);

(C2) For all i ∈ Π, all hv ∈ Hist such that h does not visit Fi and for
all ρ, ρ′ ∈ Plays(v): Reachi(ρ) > Reachi(ρ

′) =⇒ Reachi(hρ) >

Reachi(hρ
′).

Proof. Let G = (A,Reach, (Fi)i∈Π) be either a qualitative, quantitative or
weighted Reachability game.
The proof of (C1) is the same as the one provided in Lemma 2.2.20. We thus
only prove (C1). Let i ∈ Π.

• If Reachi = qRi: let hv ∈ Hist be such that h does not visit Fi and
let ρ, ρ′ ∈ Plays(v) be such that qRi(ρ) > qRi(ρ

′), then qRi(hρ) =

qRi(ρ) > qRi(ρ
′) = qRi(hρ

′).

• If Reachi = WRi: let hv ∈ Hist be such that h does not visit Fi
and let ρ, ρ′ ∈ Plays(v) be such that WRi(ρ) > WRi(ρ

′), then, by
assuming that hv = h0 . . . hk and S =

∑k−1
n=0wi(hn, hn+1), WRi(hρ) =

S + WRi(ρ) > S + WRi(ρ
′) = WRi(hρ

′).
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• If Reachi = QRi, it is a particular case Reachi = WRi.

2.2.4 Play of a given gain profile in Boolean games

In the remaining part of this document, given a Boolean game G, we sometimes
need to know what is the complexity of checking the existence of a play ρ in
the game arena such that Gain(ρ) = p for some gain profile p ∈ {0, 1}|Π|. This
section considers this question for classical qualitative objectives.

Lemma 2.2.22 ([BBGR18]). Let G be a Boolean game. Let p ∈ {0, 1}|Π|

and v ∈ V . Determining whether there exists a play with gain profile p from
v is

• in polynomial time for Büchi, co-Büchi, Explicit Muller, and Parity
objectives,

• in O(2|Π|(|V |+ |E|)) time for Reachability and Safety objectives, and

• in O(2L ·M+(LL ·|V |)5) time for Rabin, Streett, and Muller objectives,
where L = 2` and

– ` = Σ
|Π|
i=12 ·ki and M = O(Σ

|Π|
i=12 ·ki) such that for each player i ∈

Π, ki is the number of his pairs (Gij , R
i
j)1≤j≤ki in the case of Rabin

and Streett objectives, and

– ` = Σ
|Π|
i=1di and M = O(Σ

|Π|
i=1|Fi| ·di) such that for each player i ∈

Π, di (resp. |Fi|), is the number of his colors (the size of his
family of subsets of colors) in the case of Muller objectives.

The general approach to prove this lemma is the following one. A play with
gain profile p from v in a Boolean game G is a play satisfying an objective O

equal to the conjunction of objectives Wini (when pi = 1) and of objectives
V ω \ Wini (when pi = 0). It is nothing else than an infinite path in the
underlying graph G = (V,E) satisfying some particular ω-regular objective O.
The existence of such paths is a well studied problem; we gather in the next
proposition the known results that we need for proving Lemma 2.2.22. Recall
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that a Generalized Reachability (resp. Generalized Büchi) objective O is a
conjunction of Reachability (resp. Büchi) objectives. Moreover, an objective
O equal to a Boolean combination of Büchi objectives, called a BC Büchi
objective, is defined as follows. Let F1, . . . , F` be ` subsets of V , and φ be a
Boolean formula over variables f1, . . . , f`. We say that an infinite path ρ in G
satisfies (φ, F1, . . . , F`) if the truth assignment

fi = 1 if and only if Inf(ρ) ∩ Fi 6= ∅, and fi = 0 otherwise

satisfies φ. All operators ∨, ∧, ¬ are allowed in a BC Büchi objective. How-
ever we denote by |φ| the size of φ equal to the number of disjunctions and
conjunctions inside φ, and we say that the BC Büchi objective (φ, F1, . . . , F`)

is of size |φ| and with ` variables.

Proposition 2.2.23 ([BBGR18]). Let G = (V,E) be a graph, v ∈ V be one
of its vertices, and O ⊆ V ω be an objective. Then deciding the existence of
an infinite path from v in G that satisfies O is

• in polynomial time when O is either a Streett objective, or an Explicit
Muller objective, or the complement of an Explicit Muller objective, or
a conjunction of a Generalized Büchi objective and a co-Büchi objective,

• in O(2`(|V | + |E|)) time when O is a conjunction of a Generalized
Reachability objective and a Safety objective, where ` is the number of
reachability objectives,

• in O(2L · |φ| + (LL · |V |)5) time for a BC Büchi objective O =

(φ, F1, . . . , F`), where L = 2`.

Proof. Let O be an objective. If it is a Streett objective, then the result is
proved in [EL87].
For the other objectives, we use known results about two-player zero-sum
games, where player A aims at satisfying a certain objective O whereas player
B tries to prevent him to satisfy it. A classical problem is to decide whether
player A has a winning strategy that allows him to satisfy O against any
strategy of player B, see for instance [Bru17, GTW02]. When player A is
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the only one to play, the existence of a winning strategy for him is equivalent
to the existence of a path satisfying O (see [Bru17, Section 3.1]). This is
exactly the problem that we want to solve. In the rest of the proof, we mean
by (G,O) a two-player zero-sum game, where player A (resp. player B) aims
at satisfying O (resp. V ω \O).
If O is an Explicit Muller objective, then deciding the existence of a winning
strategy for player A (resp. player B) (G,O) can be done in polynomial time
by [Hor08]. Thus the case where O is the complement of an Explicit Muller
objective is also proved (by exchanging players A and B).
Suppose that O is the conjunction of a Generalized Büchi objective and a
co-Büchi objective. By a classic reduction (see [CHVB18, Theorem 12]), the
game (G,O) can be polynomially transformed into a game (G′,O′) with an
objective O′ equal to the conjunction of a Büchi objective and a co-Büchi
objective. The existence of a winning strategy for player A in the latter game
can be tested in polynomial time [dAF07].
Suppose that O is the conjunction of a Generalized Reachability objective
and a Safety objective, such that ` is the number of Reachability objectives
and F is the set of vertices to be avoided in the Safety objective. We first
treat separately the Safety objective by removing from G all the vertices of
F . This can be done in O(|V |+ |E|) time. In the resulting graph G′, we then
test the existence of a winning strategy for player A in the game (G′,O′)

with O′ being the Generalized Reachability objective. This can be done in
O(2`(|V |+ |E|)) time [FH13].
If O is a BC Büchi objective (φ, F1, . . . , F`), then deciding the existence of a
winning strategy for player A in the game (G,O) can be done in O(2L · |φ|+
(LL · |V |)5) time with L = 2` by [BHR18].

Proof of Lemma 2.2.22. A play with gain profile p from v in G is a play
satisfying an objective O equal to the conjunction of objectives Wini (when
pi = 1) and of objectives V ω \Wini (when pi = 0). For each type of Boolean
objectives Wini, we first explain what kind of objective O we obtain and we
then apply Proposition 2.2.23.

• Consider a Boolean game G with Parity objectives. In this case, as
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Wini is a Parity objective for all i ∈ Π, each V ω \Wini is again a Parity
objective, and O is thus a conjunction of Parity objectives which is a
Streett objective [CHP07]. Therefore the existence of a play with gain
profile p in G can be tested in polynomial time by Proposition 2.2.23.

• Consider the case of Büchi objectives. Then, the intersection of Büchi
objectives Wini (when pi = 1) is a Generalized Büchi objective and the
intersection of co-Büchi objectives V ω \Wini (when pi = 0) is again a
co-Büchi objective. Hence O is the conjunction of a Generalized Büchi
objective and a co-Büchi objective. The existence of a play with gain
profile p in G can be tested in polynomial time by Proposition 2.2.23.

Notice that the case of Boolean games with co-Büchi objectives is solved
exactly in the same way. Indeed we have the same kind of objective O

since Wini is a co-Büchi objective if and only if V ω \Wini is a Büchi
objective.

• Consider a Boolean game with Reachability objectives. The inter-
section of Reachability objectives Wini (when pi = 1) is a General-
ized Reachability objective and the intersection of Safety objectives
V ω \Wini (when pi = 0) is again a Safety objective. The existence of
a play with gain profile p in G can be tested in O(2|Π|(|V |+ |E|)) time
by Proposition 2.2.23 as there are at most |Π| Reachability objectives.

The case of Boolean games with Safety objectives is solved in the same
way.

• Consider a Boolean game with Rabin objectives (with the related fami-
lies (Gij , R

i
j)1≤j≤ki , i ∈ Π). In this case, the objective O is the conjunc-

tion of Rabin objectives (when pi = 1) and of Streett objectives (when
pi = 0), that is, O is a BC Büchi objective (φ, (Gij , R

i
j)1≤j≤ki , i ∈ Π)

such that

φ =
∧

i|pi=1

ki∨
j=1

(gij ∧ ¬rij) ∧
∧

i|pi=0

ki∧
j=1

(¬gij ∨ rij) (2.2)

In this formula, the variable gij (resp. r
i
j) is associated with the set Gij



56 Chapter 2 – Background

(resp. Rij), and φ has size O(Σ
|Π|
i=12 · ki) and has Σ

|Π|
i=12 · ki variables.

The announced complexity for deciding the existence of a play with
gain profile p follows from Proposition 2.2.23.

The case of Boolean games with Streett objectives is solved in the same
way.

• The case of Boolean games with Muller objectives (with the related
coloring functions Ωi : V → {1, . . . , di} and families Fi ⊆ 2Ωi(V ), i ∈ Π)
is treated as in the previous item. Indeed a play satisfies the Muller
objective Wini if there exists an element F of Fi such that all colors of
F are seen infinitely often along the play while no other color is seen
infinitely often. Therefore, as the objective O is a conjunction of Muller
objectives and of the complement of Muller objectives, O is a BC Büchi
objective (φ, (F ic)c∈{1,...,di},i∈Π) described by the following formula φ

φ =
∧

i|pi=1

∨
F∈Fi

(
∧
c∈F

f ic ∧
∧
c 6∈F
¬f ic) ∧

∧
i|pi=0

∧
F∈Fi

(
∨
c∈F
¬f ic ∨

∨
c 6∈F

f ic)(2.3)

In this formula, the variable f ic is associated with the subset F ic = {v ∈
V | Ωi(v) = c} of vertices colored by color c ∈ {1, . . . , di}, i ∈ Π. This
formula has size O(Σ

|Π|
i=1|Fi| · di) and has Σ

|Π|
i=1di variables.

• It remains to treat the case of Boolean games with Explicit Muller
objectives (with the related families Fi ⊆ 2V , i ∈ Π). The approach is
a little different in a way to get a polynomial algorithm. By definition,
there exists a play ρ with gain profile p if and only if for all i, F =

Inf(ρ) ∈ Fi exactly when pi = 1.

If p 6= (0, . . . , 0), such potential sets F can be computed as follows.
Initially let O be an empty set. Then for each F ∈ ∪i∈ΠFi, we compute
q ∈ {0, 1}|Π| such that qi = 1 if and only if F ∈ Fi, and if p = q we add
F to O. Notice that O can be computed in polynomial time. Hence to
test the existence of a play with gain profile p in G, we test the existence
of a path in G satisfying the Explicit Muller objective O. This can be
done in polynomial time by Proposition 2.2.23.
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If p = (0, . . . , 0), there exists a play ρ with gain profile p if and only if
no F ∈ O′ = ∪i∈ΠFi is equal to Inf(ρ), i.e., if and only if there exists
a path in G satisfying the complement of the Explicit Muller objective
O′. This can be tested in polynomial time by Proposition 2.2.23.

2.3 Zero-sum games

Zero-sum games are games with only two players (|Π| = 2). This kind of
games allows to model a situation in which a player wants to ensure a given
property whatever the behaviour of the other player. Thus the second player
can be viewed as the opponent of the first player. In term of objectives that
means that the objectives of both players are antagonistic. It can be modeled
by Obj2 = −Obj1. The term “zero-sum” comes from this point of view, since
Obj1 + Obj2 = 0. That means that what Player 1 earns (resp. pays) Player 2

pays (resp. earns) and vice versa. Thus, we can assume, for example, that
the objective of Player 1 is given by a cost function Cost1 that he aims at
minimizing and the objective of Player 2 is given by a gain function Gain2

such that Gain2 = Cost1 that he aims at maximizing. It is the reason why
Player 1 (resp. Player 2) is also called Player Min (resp. Player Max).

Definition 2.3.1 (Zero-sum game). A zero-sum game is a game G =

(A, (GainMax,CostMin)) where

• The arena is given by A = ({Max,Min}, V, E, (VMax, VMin))

• The objective functions are such that GainMax = CostMin.

2.3.1 Qualitative zero-sum games

One particular case of zero-sum games are qualitative zero-sum games. In this
setting, (i) Player Max has a qualitative objective Win ⊆ Plays also given
by the corresponding gain function GainMax : Plays → {0, 1} (as explained
in Section 2.2.1) and (ii) Player Min has a qualitative objective Plays \Win

also given by a cost function CostMin : Plays → {0, 1} (as explained in Re-
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mark 2.2.4). The purpose of Player Max is thus to achieve his qualitative
objective, he wants to win, while Player Min wants to prevent that. Recall
that due to the convention explained in Remark 2.2.4, Player Min wins if
and only if Player Max looses. Conversly, Player Min looses if and only if
Player Max wins.

Since the game is entirely characterized by A and the objective function of
Player Max, we denote it G = (A,GainMax) where A =

({Max,Min}, V, E, (VMax, VMin)). Moreover, if Player Max has an O objective
with O ∈ { qualitative Reachability, Safety, Büchi, co-Büchi, Parity, Explicit
Muller, Muller, Rabin, Streett}, we say that that G is an O zero-sum game.

Definition 2.3.2 (Qualitative zero-sum game). A qualitative zero-sum game
G is a zero-sum game such that GainMax is a qualitative objective.

For example, if the objective of Player Max is a reachability objective and
his target set is F ⊆ V , he aims at reaching F while Player Min tries to keep
the play outside F . Notice that it means that the objective of Player Min is
thus a safety objective.

Winning Strategy In qualitative zero-sum games, since the players are
rational they both want to win. We wonder whether a player is able to ensure
to win whatever the strategy of the other player. This behavior is formalized
through the notion of winning strategy.

Definition 2.3.3 (Winning strategy). Given a qualitative zero-sum game G,
a strategy σi of Player i, i ∈ {Max,Min}, is a winning strategy for Player i
from vertex v ∈ V if for all strategies σ−i of Player −i, the outcome of the
strategy profile (σi, σ−i) from v is winning for Player i.

If Player i, i ∈ {Max,Min}, has a winning strategy from v0 ∈ V , we
say that Player i wins the initialized game (G, v0). For both players, we can
consider the set of vertices from which they win the corresponding initialized
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game: this set is called the winning region.

Definition 2.3.4 (Winning region). Given a qualitative zero-sum game G.

• The winning region of Player Max is the setWMax = {v ∈ V | ∃ σMax ∈
ΣMax st ∀ σMin ∈ ΣMin GainMax(〈σMax, σMin〉v) = 1}.

• The winning region of Player Min is the set WMin = {v ∈ V | ∃ σMin ∈
ΣMin st ∀ σMax ∈ ΣMax CostMin(〈σMax, σMin〉v) = 0}.

Definition 2.3.5 (Memoryless winning strategy). Given a qualitative zero-
sum game G, a memoryless strategy σi of Player i, i ∈ {Max,Min}, is a
memoryless winning strategy for Player i if, for all vertices v ∈ Wi, for all
strategies σ−i of Player −i, the outcome of the strategy profile (σi, σ−i) from
v is winning for Player i.

Determinacy Since a player wins if and only if the other player looses, we
can easily notice that WMax ∩ WMin = ∅. A more complex question is to
determine whether, for each vertex in the game graph, there exists a winning
strategy for one player from this vertex. That is : “Is the following equality
satisfied: WMax ∪WMin = V ?”. A game for which this property is satisfied is
called a determined game.

Definition 2.3.6 (Determined game). Given a qualitative zero-sum game
G, the game G is determined if the following equality holds:

WMax ∪WMin = V.

Martin [Mar75] proved that every qualitative zero-sum games equipped
with a Borel qualitative objective – i.e., Win is a Borel set – is determined.

Theorem 2.3.7 ([Mar75]). Every qualitative zero-sum games equipped with
a Borel qualitative objective is determined.
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It follows that if Player Max has one of the classical qualitative objective
function defined in Definition 2.2.2, the zero-sum game is determined.

Proposition 2.3.8 ([GTW02]). Every qualitative Reachability, Safety,
Büchi, co-Büchi, Parity, Explicit Muller, Muller, Rabin and Streett zero-
sum game is determined.

Moreover, for qualitative Reachability, Safety, Büchi, co-Büchi, Parity and
Rabin zero-sum games, Player Max has a memoryless winning strategy.

2.3.2 Quantitative zero-sum games

Quantitative zero-sum games are the generalization of qualitative zero-sum
games to quantitative objective functions. Since the gain function of Player Max

is entirely determined by the cost function of Player Min, we choose to take the
point of view of Player Min. If G = (A, (GainMax,CostMin)) is a quantitative
zero-sum game, we denote it G = (A,CostMin) to ease the notation. Moreover
in the rest of this document a O zero-sum game with O ∈ {quantitative Reach-
ability, weighted Reachability, discounted-sum, mean-payoff} is a quantitative
zero-sum game such that CostMin represents a O objective.

In the general case of quantatitave zero-sum games, the notions of “win-
ning” and “winning strategies” are not appropriate. We are rather interested
in the best cost or gain a player can ensure from a given vertex. This is related
with the concepts of values and optimal strategies that we now define.

In order to ease the notation, in a quantitative zero-sum game G, Player Min

(resp. Player Max) is also called Player 1 (resp. Player 2).

Values and Determinacy In a quantitative zero-sum game G, given a ver-
tex v ∈ V , the upper value represents the lowest cost which can be ensured by
Player Min from v while the lowest value respresents the greatest gain which
can be ensured by Player Max from v.
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Definition 2.3.9 (Lower and upper value). Given a quantitative zero-sum
game G, for all v ∈ V , the lower value Val(v) and the upper value Val(v) are
defined as:

Val(v) = sup
σMax∈ΣMax

inf
σMin∈ΣMin

CostMin(〈σMin, σMax〉v)

and

Val(v) = inf
σMin∈ΣMin

sup
σMax∈ΣMax

CostMin(〈σMin, σMax〉v).

For all v ∈ V , the inequality Val(v) ≤ Val(v) holds but the reverse inequal-
ity is not always true. When for all v ∈ V , the lower and the upper values
coincide, the game is said determined.

Definition 2.3.10 (Determined game). Given a quantitative zero-sum game
G, if for all v ∈ V , the following equality holds, the game is determined :

Val(v) = Val(v).

In this case, we say that the game G has a value from v. This value Val(v)

is such that Val(v) = Val(v) = Val(v).

Optimal Strategies Given a quantitative zero-sum game G, a strategy of
Player Min is an optimal strategy from a vertex v ∈ V , if following this strategy
from v ensures a cost less than or equal to Val(v) to Player Min whatever the
strategy of the other player. On the other hand, a strategy of Player Max is an
optimal strategy from a vertex v ∈ V , if following this strategy from v ensures
a gain greater than or equal to Val(v) to Player Max whatever the strategy of
Player Min.

Definition 2.3.11 (Optimal strategy). Let G be a quantitative zero-sum
game.
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Let σ∗Min be a strategy of Player Min.

• Given v ∈ V , σ∗Min is an optimal strategy for Player Min from v if for
all strategies σMax of Player Max:

CostMin(〈σ∗Min, σMax〉v) ≤ Val(v).

• σ∗Min is an optimal strategy for Player Min if, for all v ∈ V and for all
strategies σMax of Player Max:

CostMin(〈σ∗Min, σMax〉v) ≤ Val(v).

Let σ∗Max be a strategy of Player Max.

• Given v ∈ V , σ∗Max is an optimal strategy for Player Max from v if for
all strategies σMin of Player Min:

CostMin(〈σMin, σ
∗
Max〉v) ≥ Val(v).

• σ∗Max is an optimal strategy for Player Max if, for all v ∈ V and for all
strategies σMin of Player Min:

CostMin(〈σMin, σ
∗
Max〉v) ≥ Val(v).

If the game is determined, some links with the notion of optimal strategies
can easily be done. The following lemma states two of them.

Lemma 2.3.12. Given a determined quantitative zero-sum game G, a vertex
v ∈ V of the game graph, σ∗1 ∈ ΣMin an optimal strategy for Player Min from
v and σ∗2 ∈ ΣMax an optimal strategy for Player Max from v. The following
assertions hold.

1. CostMin(〈σ∗1, σ∗2〉v) = Val(v);
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2. inf
σ1∈ΣMin

CostMin(〈σ1, σ
∗
2〉v) = Val(v) = sup

σ2∈ΣMax

CostMin(〈σ∗1, σ2〉v).

Quantitative Reachability, weighted Reachability, discounted-sum and mean-
payoff zero-sum games are determined and both players have memoryless op-
timal strategies.

Proposition 2.3.13 ([De 13]). Let G be a quantitative Reachability, weigthed
Reachability, discounted-sum or mean-payoff zero-sum game. Then:

• G is determined;

• There exist memoryless optimal strategies for both players.

Remark 2.3.14. At the beginning of this section we claim that quantitative
zero-sum games are a generalization of qualitative zero-sum games. We now
highlight how the concept of values and optimal strategies extend those of win-
ning regions and winning strategies.

Let us first notice that if G is a qualitative zero-sum game, for all v ∈ V ,
we have that v ∈ WMax if and only if Val(v) = 1 and v ∈ WMin if and only if
Val(v) = 0. It follows that WMin ∪WMax = V if and only if Val(v) = Val(v)

for all v ∈ V . Thus, the notions of determinacy coincide (see Definition 2.3.6
and Definition 2.3.10).

Moreover, given v ∈ V , if σ∗Max (resp. σ∗Min) is a winning strategy for
Player Max (resp. Player Min) from v, then σ∗Max (resp. σ∗Min) is an optimal
strategy for Player Max (resp. Player Min) from v. In this case, all strategies
of Player Min (resp. Player Max) are optimal stratetegies for him from v.

Finally, in a determined game, given v ∈ V , if Val(v) = 0 (then Val(v) = 0)
and σ∗Min is an optimal strategy for Player Min from v, then σ∗Min is a winning
strategy for Player Min from v. In the same way, given v ∈ V , if Val(v) = 1

(then Val(v) = 1) and σ∗Max is an optimal strategy for Player Max from v, then
σ∗Max is a winning strategy for Player Max from v.
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2.4 Multiplayer games

A (initialized) multiplayer game is a (initialized) game for which we assume
that its arena A is such that |Π| ≥ 2. In the setting of multiplayer games,
the objectives of the players are not necessarily antagonistic. Thus the solu-
tion concepts of winning strategies and optimal strategies are not well suited
anymore. It is the reason why we are interested in solution concepts that are
equilibria: Nash equilibria, subgame perfect equilibria, weak subgame perfect
equilibria, . . . Notice that with equilibria it is no longer question of optimality
but rather of stability. Moreover, there exist games in which there exist (at
least) two equilibria: one which is a “good” equilibrium for both players and
one which is a “bad” equilibrium for both players. We explicit an example in
Example 2.4.2 with a multiplayer quantitative Reachability games.

In this section, we give all the definitions by assuming that the objective
function of each player is a cost function (see Remark 2.2.1).4 We define the
concepts of Nash equilibria (Section 2.4.1), subgame perfect equilibria (Sec-
tion 2.4.2) and weak subgame equilibria (Section 2.4.3). For this latter notion,
we also need to introduce the notion of weak Nash equilibrium.

2.4.1 Nash equilibrium

The famous notion of Nash equilibrium [Nas50] is one of the most studied
solution concept. A strategy profile is a Nash equilibrium if no player has an
incentive to unilaterally change his strategy. It is like a contract between the
players in which no player can improve alone his cost by deviating from his
strategy.

Definition 2.4.1 (Nash equilibrium). Given an arena A and an initialized
multiplayer game (G, v0) = (A,Cost), the strategy profile σ is a Nash equi-
librium (NE) in (G, v0) if for all i ∈ Π and all σ′i ∈ Σi,

Costi(〈σ〉v0) ≤ Costi(〈σ′i, σ−i〉v0).

4 To obtain the definitions for a gain function, it suffies to replace the ≤ (resp. <) symbols
by ≥ (resp. >) symbols and Costi by Gaini.
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A related notion to Nash equilibria is the notion of profitable deviation.
Given an initialized game (G, v0) and a strategy profile σ in this game, we
have that σ′i is a profitable deviation for Player i w.r.t. σ in (G, v0) if

Costi(〈σ′i, σ−i〉v0) < Costi(〈σ〉v0).

Thus a Nash equilibrium is a strategy profile such that no player has a prof-
itable deviation.

Example 2.4.2. Let us consider the initialized quantitative Reachability game
depicted in Figure 2.5. In this game the target set of both player is F1 = F2 =

{v3}.

v0v1 v2

v3

v4

Figure 2.5: Initialized game (G, v0) with quantitative objectives and different
Nash equilibria.

• The memoryless strategy profile σ depicted by double arrows in Fig-
ure 2.5 is not a Nash equilibrium. Formally,

σ1(v) =

v0 if v ∈ {v1, v3, v4}

v4 if v = v2

and σ2(v) = v2 when v = v0.

The outcome of this strategy profile is (v0v2v4)ω and thus its cost profile
is (+∞,+∞) since no player visits his target set. Clearly the deviating
strategy σ′1 of Player 1 defined as follows σ′1(v) = v3 if v = v2 and
σ′1(v) = σ1(v) otherwise is a profitable deviation for Player 1 w.r.t. σ

in (G, v0). Indeed if both players follow the strategy profile (σ′1, σ2) the
cost of Player 1 is equal to 2.

• In fact the strategy profile (σ′1, σ2) is a Nash equilibrium with outcome
(v0v2v3)ω and with cost profile (2, 2). In particular, by following this
equilibrium both players visit their target set.
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• Another Nash equilibrium in this game is the strategy profile (σ1, σ
′
2)

where σ′2 is a memoryless strategy such that σ2(v) = v1 when v = v0.
The outcome of this equilibrium is (v0v1)ω with cost profile (+∞,+∞).
In particular, by following this equilibrium no player visit his target set.

Let us now mention some results about the existence of Nash equilibria.
Other various results about the existence of Nash equilibria and the needed
amount of memory may be found in [De 13].

Theorem 2.4.3 ([De 13, Theorem 4.3.2]). In every initialized multiplayer
weighted Reachability game, there exists a finite-memory Nash equilibrium.

Theorem 2.4.4 ([De 13, Proposition 4.4.11]). In every initialized multi-
player game where

• each cost function is prefix-independent and;

• for each player i, the coalitional gamea Gi is determined and both play-
ers have optimal strategies,

there exists a Nash equilibrium.
aThe notion of coalitional game is defined in Section 4.1.

Even if the existence of a Nash equilibrium is guaranteed in several kinds
of multiplayer games, there are games in which no Nash equilibrium exists.
We illustrate this phenomenon in the following example.

Example 2.4.5. Let us consider the multiplayer weighted Reachability game
(G, v0) depicted in Figure 2.6. Notice that in this example we allow nega-
tive weights on edges. In this example, there are two players: Player 1 and
Player 2. The only vertex owned by Player 1 (resp. Player 2) is v0 (resp. v1)
and its target set is {v1} (resp. {v1}).

Let us show that there is no NE in (G, v0). In this game Player 2 has only
one strategy σ2: always cycling in v1. Thus, we only consider the different
strategies of Player 1. There are two kinds of strategies for Player 1: one
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strategy that consists in cycling infinitly often in v0 and one family of strategies
which consist in cycling a given number of times in v0 and then going in v1.
Formally, the different possible strategies are σ∞1 : Hist1(v0) → V such that
σ∞1 (hv0) = v0 for all hv0 ∈ Hist1(v0) and, for all k ∈ N0, σk1 : Hist1(v0) → V

such that σk(hv0) = v1 if the number of occurences of v0 along hv0 is equal to
k and σk(hv0) = v0 otherwise.

Obviously, the strategy profile (σ∞1 , σ2) is not an NE since Player 1 does
not reach his target set and he only has to choose to go in v1 in order to obtain
a cost less than +∞.

Let us prove that for all k ∈ N0, the strategy profile (σk1 , σ2) is not an
NE. Let k ∈ N0, we have that 〈σk1 , σ2〉v0 = vk0v

ω
1 (where vk0 is the k times

concatenation of vertex v0). Hence Cost1(〈σk1 , σ2〉v0) = (−1) · (k − 1) + 1. It
follows that the strategy σk+1

1 is a profitable deviation for Player 1 w.r.t. σk1 .

v0 v1
(1, 1)

(−1,−1) (1, 1)

Figure 2.6: A multiplayer game without Nash equilibrium.

To conclude this section, let us mention that, unfortunately Nash equilibria
have non desirable drawbacks: they are subject to uncredible threats: decisions
in subgames that are irrational and used to threaten the other players and force
them to follow a given behavior. Example 2.4.2 illustrates this phenomenon.
If we consider the Nash equilibrium (σ1, σ

′
2), we observe that in v2 Player 1

does not have a rational behaviour. Actually, in v2 he should prefer to go in
v3 where he visits his target instead to choose to go in v4.

Example 2.4.2 illustrates two weaknesses of NEs: (i) some equilibria may
appear not relevant and (ii) NEs do not take into account the sequential aspect
of games played on graphs and so they do not handle irrational behaviours
in subgames. To avoid this latter problem, the concept of subgame perfect
equilibria has been proposed. We define formally this solution concept and the
notion of subgames in the next section. We come back to (i) in Part III.
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2.4.2 Subgame perfect equilibrium

To prevent from uncredible threats and take into account the sequential aspect
of games played on graphs, a more suitable notion of equilibria than NEs is
the notion of subgame perfect equilibrium [Sel65, OR94]. A strategy profile is
a subgame perfect equilibrium if it a Nash equilibrium in each subgame.

Before formally defining the concept of subgame perfect equilibrium, we
need to introduce the notion of subgame. Given an initialized game (G, v0) =

(A,Cost) and a history hv ∈ Hist(v0), the initialized game (G�h, v) is called
a subgame of (G, v0) and is such that G�h = (A,Cost�h) and Costi�h(ρ) =

Costi(hρ) for all i ∈ Π and hρ ∈ Plays. Notice that (G, v0) is a subgame of
itself.

Moreover if σi is a strategy of Player i in (G, v0), then σi�h denotes the
strategy in (G�h, v) such that for all histories h′ ∈ Histi(v), σi�h(h′) = σi(hh

′).
Similarly, from a strategy profile σ in (G, v0), we derive the strategy profile
σ�h in (G�h, v). Let (G, v0) be an initialized multiplayer game, following this
formalism, a strategy profile σ is a subgame perfect equilibrium in (G, v0) if for
all hv ∈ Hist(v0), σ�h is an NE in (G�h, v).

Definition 2.4.6 (Subgame perfect equilibrium). Given an arena A and
an initialized multiplayer game (G, v0) = (A,Cost), the strategy profile σ
is a subgame perfect equilibrium (SPE) in (G, v0) if for all for all histories
hv ∈ Hist(v0), σ�h is a Nash equilibrium in (G�h, v).

Remark 2.4.7. A subgame perfect equilibrium σ in (G, v0) is in particular a
Nash equilibrium in (G, v0).

Example 2.4.8. Let us come back to the initialized multiplayer game of Ex-
ample 2.4.2.

• The strategy profile (σ1, σ
′
2) is not an SPE in (G, v0). The memoryless

strategy σ′1 is a profitable deviation for Player 1 w.r.t. (σ1�v0 , σ
′
2�v0

) in
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(G�v0 , v2). Indeed, we have that

QR1�v0
(〈σ′1, σ′2�v0

〉v2) = QR1(v0〈σ′1, σ′2�v0
〉v2)

= QR1(v0v2v3(v0v1)ω) = 2

while

QR1�v0
(〈σ1�v0 , σ

′
2�v0
〉v2) = QR1(v0〈σ1�v0 , σ

′
2�v0
〉v2)

= QR1(v0v2v4(v0v1)ω) = +∞.

Let us recall that (σ1, σ
′
2) is an NE in (G, v0) with an uncredible threat.

• The strategy profile (σ′1, σ2) is an SPE in (G, v0).

Let us now mention some results about the existence of subgame perfect
equilibria.

Theorem 2.4.9 ([De 13, Theorem 6.2.1]). In every initialized multiplayer
weighted Reachability game, there exists a subgame perfect equilibrium.

A more general result is the following.

Theorem 2.4.10 ([FL83, Har85]). Given an initialized multiplayer game
(G, v0) = (A,Cost), if the cost functions Costi, for each i ∈ Π, are continuous
and real-valued, then there exists a subgame perfect equilibrium in (G, v0).

In the case of qualitative objectives, the following result holds.

Theorem 2.4.11 ([GU08]). Let (G, v0) be an initialized multiplayer game
with qualitative Borel objectives, there always exists a subgame perfect equi-
librium in (G, v0).

Even if subgame perfect equilibria prevent uncredible threats, some strange
phenomenon may also appear with subgame perfect equilibria. We explicit that
in Exemple 2.4.12.
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Example 2.4.12. We consider the multiplayer initialized quantitative Reach-
ability game (G, v0) illustrates in the following figure and such that the target
sets are F1 = {v3} and F2 = {v3, v5}. Notice that there is one additional
vertex compared to our running example.

v0v1 v2

v3

v4v5

Let us consider the memoryless strategy profile σ depicted by the double
arrows in this figure. We can prove that σ is an SPE in (G, v0). The outcome
of this strategy profile is v0(v1v5)ω and thus Player 1 does not visit his target
set whereas Player 2 does. We informally provide the ideas of why σ is an
SPE.

Player 2 visits his target in two steps and he cannot do better, this is the
value of a shortest path between v0 and one of the vertices of F2. It means that
Player 2 has no profitable deviation. This argument holds in all subgames, in-
deed in each subgame Player 2 always visits his target set as soon as possible.
It remains to show that Player 1 does not have any profitable deviation in any
subgame. In the main game (G, v0), Player 1 cannot do anything because even
if he changes his strategy Player 2 forces the play to stay in the left part of the
arena. In a subgame (G�h, v) with v ∈ {v0, v1, v4, v5} for some hv ∈ Hist(v0)

this argument remains true. In a subgame (G�h, v3) for some hv3 ∈ Hist(v0)

Player 1 has obviously no incentive to deviate from his strategy and in the
subgame (G�h, v2) for some hv2 ∈ Hist(v0), Player 2 chooses to go directly in
v3 (an element of his target set), thus he cannot make a better choice.

We find the SPE σ a little bit counter-intuitive because if Player 1 is really
clever and selfish he should desagree to follow this contract. Indeed, he has a
way to force Player 2 to visit both F1 and F2. He only has to always choose
to go in v0 from v1 and follows σ1 from the other vertices. In this way, if
Player 2 wants to visit his target set he has to choose to go in v2 at a moment.
Hopefully an SPE with this behavior of Player 1 exists, Player 2 has to play
following the strategy σ′2 defined has follows: for all v ∈ V2, σ′2(v) = v2. In this
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way the outcome of the SPE is (v0v2v3)ω and both players reach their target
set with a cost equal to 2.

2.4.3 Weak subgame perfect equilibrium

While a subgame perfect equilibrium does not always exist, Kuhn’s theorem
asserts that every finite extensive game with perfect information has a subgame
perfect equilibrium (see e.g., [OR94]). The proof of this theorem is based on
the central notion of one deviation property. Motivated by the purpose of
extending this concept, authors in [BBMR15] introduced the notion of weak
Nash equilibrium and weak subgame perfect equilibrium.

Before defining this kinds of equilibria we introduce the notion of deviation
step, finitely deviating strategy and one-shot deviating strategy. This section is
inspired by [BBMR15].

Deviation Step, Finitely Deviating Strategy, One-shot Deviating Strat-
egy

When we fix a strategy profile σ in an initialized multiplayer game and a
strategy σ′i of Player i, we can look at the number of times that Player i
changes his behavior along the outcome of (σ′i, σ−i) with respect to σi. The
prefixes of the outcome of (σ′i, σ−i) where this phenomenon occurs are called
deviation steps from σ.

Definition 2.4.13 (Deviation step). Let (G, v0) be an initialized multiplayer
game, σ be a strategy profile and σ′i be a strategy of Player i. We say that
σ′i has an hv-deviation step from σ for some hv ∈ Histi(v0) if

hv < 〈σ′i, σ−i〉v0 and σ′i(hv) 6= σi(hv).

If the number of deviation steps of σ′i is finite this deviating strategy is
called a finitely deviating strategy while if σi and σ′i differs only in v0, σ′i is
called a one-shot deviating strategy.
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Definition 2.4.14 (Finitely/one-shot deviating strategy). Let (G, v0) be an
initialized multiplayer game and σ be a strategy profile in (G, v0).

• A strategy σ′i in (G, v0) is a finitely deviating strategy from σ if it has
a finite number of deviation steps from σ.

• A strategy σ′i in (G, v0) is a one-shot deviating strategy from σ if it has
a v0-deviation step from σ and it is the only one.

(Very) Weak Nash Equilibria and (Very) Weak Subgame Perfect
Equilibria

A Nash equilibrium is a strategy profile which is resistant against any deviating
strategy of any player. In particular, the considered strategies may have an
infinite number of deviation steps. With (very) weak Nash equilibria it is not
the case, the strategy profile must only be resistant against finitely (resp. one-
shot) deviating strategies of any player.

Definition 2.4.15 (Weak Nash equilibrium). Let (G, v0) be an initialized
multiplayer game, the strategy profile σ is a weak Nash equilibrium (weak
NE) in (G, v0) if for all i ∈ Π and all finitely deviating strategy σ′i from σ,
we have:

Costi(〈σ〉v0) ≤ Costi(〈σ′i, σ−i〉v0).

Definition 2.4.16 (Very weak Nash equilibrium). Let (G, v0) be an initial-
ized multiplayer game, the strategy profile σ is a very weak Nash equilibrium
(very weak NE) in (G, v0) if for all i ∈ Π and all one-shot deviating strategy
σ′i from σ, we have:

Costi(〈σ〉v0) ≤ Costi(〈σ′i, σ−i〉v0).

As for Nash equilbria and subgame perfect equilibria, a (very) weak NE
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may be a (very) weak NE in each subgame of the initialized multiplayer game
(G, v0).

Definition 2.4.17 ((Very) weak subgame perfect equilibrium). Let (G, v0)

be an initialized multiplayer game, the strategy profile σ is a weak (resp. very
weak) subgame perfect equilibrium (weak (resp.very weak) SPE) in (G, v0) if
for all history hv ∈ Hist(v0), σ�h is a weak (resp. very weak) Nash equilibrium
in (G�h, v).

The following proposition asserts that both notions are equivalent.

Proposition 2.4.18 ([BBMR15]). Let (G, v0) be an initialized multiplayer
game and σ be strategy profile, σ is a weak SPE in (G, v0) if and only if σ is
a very weak SPE in (G, v0).

Example 2.4.19. We consider the initialized multiplayer Büchi game (G, v0) =

(A,Buchi) such that its arena is depicted by the following figure and Buchi =

(Buchi1,Buchi2). In this example the target set of Player 1 (resp. Player 2)
is F1 = {v4} (resp. F2 = {v5}). Thus in this game Player 1 (resp. Player 2)
wants to reach infinitely often vertex v4 (resp. v5).

v0v1 v2

v3

v4v5

The memoryless strategy profile (σ1, σ2) depicted by double arrows is not
a weak NE in (G, v0) and in particular not a weak SPE (G, v0). We have that

σ1 is defined as follows, for all v ∈ V1, σ1(v) =


v5 if v = v1

v3 if v = v2

v0 if v ∈ {v3, v4}

and σ2 is

defined as follows, for all v ∈ V2 (that is for v = v0), σ2(v) = v2. We have that
〈σ1, σ2〉v0 = (v0v2v3)ω and Buchi(〈σ1, σ2〉v0) = (0, 0).
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We can easily see that Player 2 has a finitely deviating strategy τ2 from
(σ1, σ2) such that τ2 is a profitable deviation for Player 2 w.r.t. (σ1, σ2). We
define τ2 as follows, for all hv ∈ Hist2(v0), in particuler Last(hv) = v0, τ2(hv) =v1 if h = ε

σ2(v) otherwise
. We have that τ2 is a one-shot deviating strategy from

(σ1, σ2) since it only differs from σ2 in v0. Moreover, 〈σ1, τ2〉v0 = v0(v1v5)ω

and Gain(〈σ1, τ2〉v0) = (0, 1). Thus τ2 is a profitable deviation for Player 2

from (σ1, σ2). It concludes the proof that (σ1, σ2) is not a weak NE.

On the contrary, if we consider the same game with a different memoryless
strategy profile (σ′1, σ2) depicted by double arrows in the following picture, this
strategy profile is a weak NE. Notice that the only difference is that from v1

Player 1 always chooses to go in v0 instead of v5.

v0v1 v2

v3

v4v5

That is σ′1 is defined as follows, for all v ∈ V1, σ1(v) =


v0 if v = v1

v3 if v = v2

v0 if v ∈ {v3, v4}

.

Let us assume that τ1 is a profitable defivation of Player 1 from (σ′1, σ2). The
only way for Player 1 to obtain a gain of 1 is to change his choice from v1 an
infinite number of times by choosing to go in v4 instead of v3. In this way, the
outcome of the strategy profile (τ1, σ2) visits v4 infinitely often. But it means
that {v0v2(v3v0v2)k | k ∈ N and τ1(v0v2(v3v0v2)k) 6= σ′1(v0v2(v3v0v2)k)} is in-
finite and so τ1 cannot be a finitely deviating strategy of Player 1 from (σ′1, σ2).

For Player 2, the main idea is that since Player 1 always chooses to go in
v0 from v1, whatever the strategy τ ′2 of Player 2, the outcome 〈σ′1, τ ′2〉v0 never
visits v5. Thus Player 2 has no profitable deviation w.r.t. (σ′1, σ2).

Notice that (σ′1, σ2) is also a weak SPE.

Let us now mention some results about existence of weak subgame perfect
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equilibria. We first mention that as an SPE is a weak SPE, all results provided
in the previous section about the existence of SPEs also hold for weak SPEs.

Theorem 2.4.20 ([BRPR17]). Let (G, v0) = (A,Cost) be an initialized mul-
tiplayer game such that

• either each cost function Costi, i ∈ Π, is prefix-independent;

• or each Costi, i ∈ Π, has a finite range.

Then there exists a weak SPE in (G, v0).

Remark 2.4.21. Sometimes the notion of finitely deviating strategy is defined
slightly differently (see [BRPR17] for example). With this other definition
we do not only count the number of deviations along the outcome. Given
an initialized multiplayer game (G, v0), a strategy profile σ and a strategy σ′i
of Player i both in this game, we consider the number of histories (without
any restriction) such that σ′i differs from σi. That is σ′i is a finitely deviating
strategy from σ if the set {h ∈ Histi(v0) | σi(h) 6= σ′i(h)} is finite.

Obviously these two notions are not equivalent but when we deal with weak
NEs and weak SPEs we can use interchangeably both definitions. Indeed, each
strategy σ′i such that {h ∈ Histi(v0) | σi(h) 6= σ′i(h)} is finite is a finitely
deviating strategy from σ in the sense of Definition 2.4.14. Moreover, if we
have a finitely deviating strategy σ′i from σ in the sense of Definition 2.4.14,
we can build a strategy τ ′i such that: (i) 〈σ′i, σ−i〉v0 = 〈τ ′i , σ−i〉v0 and thus
Costi(〈σ′i, σ−i〉v0) = Costi(〈τ ′i , σ−i〉v0) and (ii) {h ∈ Histi(v0) | σi(h) 6= τ ′i(h)}
is finite. The strategy τ ′i has only to follow σ′i along the outcome 〈σ′i, σ−i〉v0

and to mimic σi otherwise.

Equivalence with the notion of SPE

Even if it is well known that there exist games with weak SPEs but no SPE
(see e.g.,[BBMR15]), in some classes of games the notions of very weak SPE,
weak SPE and SPE are equivalent. For example this is the case with games
such that the cost functions are continuous.
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Proposition 2.4.22 ([BBMR15]). Let (G, v0) = (A,Cost) be an initialized
multiplayer game and let σ be a strategy profile in this game. If for all i ∈ Π,
Costi is a continuous, then: σ is a weak SPE in (G, v0) if and only if σ is a
very weak SPE in (G, v0) if and only if σ is an SPE in (G, v0).

Corollary 2.4.23. Let (G, v0) = (A,Cost) be an initialized multiplayer quan-
titative or weighted Reachability game, let σ be a strategy profile in this game,
then: σ is a weak SPE in (G, v0) if and only if σ is a very weak SPE in (G, v0)

if and only if σ is an SPE in (G, v0).

As shown by Example 2.4.19, a weak Nash equilibrium has to be seen as
a contract where no one has an incentive to finitely deviate alone. In such a
contract a player may have a profitable deviation which needs infinitely many
changes. Notice that the winning strategy of Player 1 σ∗1 in Example 2.4.19
is a profitable deviation for Player 1 w.r.t. (σ′1, σ2). Altought playing σ∗1 is
optimal for Player 1 this cannot be achieved from σ′1 by finitely deviating.
As in the classical setting of game theory, the study of equilibria concerns
stability rather than optimality. In this spirit, weak Nash equilibria can be
used to model stability under finitely deviating strategies.

Beyond this weakness of weak SPEs, Proposition 2.4.22 shows a real strength
of weak SPEs. Indeed, it means that for games with continuous objective func-
tions if we want to study SPEs in these games we only have to study weak
SPEs which is a more simple solution concept since they only have to be re-
sistant against finitely deviating strategies. This property is one of the keys of
some of our results in Part III.
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CHAPTER 3

INTRODUCTION

Looking for an equilibrium in an initialized multiplayer game (G, v0) amounts
to (i) fixing a strategy for each player—a function which assigns a next vertex
to each history such that its last vertex is a vertex owned by this player—
and (ii) verifying that this strategy profile is resistant against a class of de-
viating strategies either in (G, v0) or in each of its subgames (G�h, v) (with
hv ∈ Hist(v0)). It is a huge amount of work especially if we are only interested
in the equilibrium outcome. For example, one might ask if there exists an
equilibrium with a given cost profile (see Part III). In this case we only want
to decide if there exists a play such that (i) this play can be an equilibrium
outcome and (ii) the cost profile of this play is the one we desire.

In order to consider this kind of questions, we aim at finding a way to
rephrase the existence of an equilibrium in terms of equilibrium outcome in-
stead of strategy profile.

“Is there a play in the game which satisfies some “good” properties,
which characterize equilibria outcomes?”

Thus when these “good” properties are well defined for a particular kind of
equilibrium (NE, SPE or weak SPE), the set of plays which satisfy these prop-
erties is exactly set of outcomes of this particular kind of equilibrium. Different
ways to characterize the set of outcomes of equilibria may be considered. Our

79
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approach relies on the notion of λ-consistent play.

λ-Consistent Plays Our purpose with the notion of λ-consistent plays is to
impose some constraints on the plays which are equilibrium outcomes. These
constraints concern the cost (resp. gain) of each player along a given play. We
define a labeling function λ : V → R ∪ {−∞,+∞} which labels the vertices of
the game graph with values. A play is a λ-consistent play if from each vertex
v along this play, let us assume that v ∈ Vi, the cost (or gain) of Player i from
v is less than or equal to (resp. greater than or equal to) the value λ(v) of this
vertex.

For example, let us consider an initialized Boolean game (G, v0) and assume
that we have built a labeling function λ : V → {0, 1}. Let ρ = ρ0ρ1 . . . be a
play in (G, v0), if ρn is a vertex owned by Player i and λ(ρn) is equal to 0,
then the labeling function λ imposes no constraint on ρ. On the other hand,
if λ(ρn) = 1 it means that from ρn Player i should achieve his qualitative
objective along ρ.

It is important to notice that the notion of λ-consistent plays does not
allow us to characterize the outcomes of equilibria in games equipped with any
cost (resp. gain) functions. We explicit the conditions that the cost (resp.
gain) have to satisfy in Chapter 6 and Chapter 7. Moreover, it seems natural
that the same labeling function cannot characterize both NEs outcomes, weak
SPEs outcomes and SPEs outcomes.

The formal definition of λ-consistent play is provided in Chapter 5.

Characterization of Nash Equilibria Outcomes The philosophy of the
characterization of Nash equilibria outcomes that we consider is the same as
the one of the well-known Folk theorem for infinitely repeated game [OR94].

Let (G, v0) be an initialized multiplayer game. We first study what should
be the behaviour of a player if he plays against the coalition of the other players.
In order to do so, for each player i ∈ Π, we consider the zero-sum game Gi in
which Player i is one of the players and the coalition of the other players −i
becomes the other player. This zero-sum game is called the coalitional game
of Player i. The value Vali(v) of a vertex v in this game represents the cost
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(resp. gain) that Player i can ensure from v in G if all the other players play
against him.

From the values of the vertices in all coalitional games (Gi)i∈Π, the labeling
function λ = Val* : V → R ∪ {−∞,+∞} is defined as follows: if v ∈ Vi then
Val*(v) = Vali(v). We claim that the labeling function Val* allows to charac-
terize Nash equilibria outcomes in multiplayer games equipped with strongly
prefix-linear cost (resp. gain) functions and such that the coalitional games
are determined with memoryless optimal strategies for both players.

In few words, if ρ ∈ Plays(v0) is not a Val*-consistent play that means
that there exists a vertex v along ρ, belonging to some player i ∈ Π, such that
the cost (resp. gain) of Player i from v is worse than what he could ensure
from v even if he played against the coalition of the other players. That means
that he can do better from v and so he has a profitable deviation. On the
other hand, if ρ is Val*-consistent, then following the play ρ until some player
deviates and punishing the deviator by forming a coalition against him once a
deviation occurs leads to a Nash equilibrium.

All the details are given in Chapter 6.

Characterization of Weak Subgame Perfect Equilibria Outcomes
Since some NEs are not weak SPEs, we have to find another labeling function to
characterize weak SPEs outcomes. The labeling function λ that characterizes
weak SPEs outcomes is obtained from an iterative procedure. We begin with
an initial labeling function that imposes no constraint on the plays and then,
by iterating an operator, we reinforce the constraints step after step, up to
obtaining a fixpoint which is the required function λ.

Roughly speaking, at the initial step λ0 is such that all plays are λ0-
consistent. Then, if we assume that λk is known for some k ∈ N, for each
v ∈ V , by assuming that v ∈ Vi for some i ∈ Π, the value λk+1(v) represents
the best cost (resp. gain) that Player i can ensure for himself from v with
a “one-shot” choice. Moreover, this choice takes into account that only plays
which are λk-consistent from each v′ ∈ Succ(v), have to be considered.

If this procedure reaches a fixpoint λ∗ and with some additional conditions
on the cost functions (resp. gain functions) involved in the multiplayer game,
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we are able to build a weak SPE from the sets of λ∗-consistent plays.
All details are given in Section 7.3.
In Section 7.4, we explain how we obtain weak SPEs outcomes characteri-

zations from the general characterizations provided in Section 7.3. In this way,
we obtain characterizations for Boolean games with prefix-independent gain
functions, for qualitative and quantitative Reachability games and for Safety
games.

Characterization of Subgame Perfect Equilibria Outcomes Since the
notion of weak SPE and SPE is equivalent for multiplayer games with contin-
uous cost functions (resp. gain functions). It is possible to obtain a character-
ization of SPEs outcomes for some particular multiplayer games. We discuss
this in Section 7.5.

Organization of the part In all this part except in Chapter 4, in the defini-
tions and results we assume that all the objective functions are cost functions.
The corresponding definitions and results for gain functions may be obtained
by replacing the ≤ (resp. <) symbols by ≥ (resp. >) symbols and vice versa.
In the same way, min (resp. inf) have to be replaced by max (resp. sup) and
vice versa. Notice that we sometimes consider gain functions in our examples.

In Chapter 4, we begin by introducing two particular kinds of games which
are needed to obtain our different characterizations: the coalitional games and
the extended reachability games. In Chapter 5, we define the notion of λ-
consistent play for a given labeling function λ. This notion is at the heart of
the characterizations that we provide in the other chapters of this part. In
Chapter 6, we provide an NE outcome characterization based on the values
of the players in the different coalitional games. In Chapter 7, we first give a
characterizations of weak SPEs outcomes for multiplayer games such that the
players’ objective functions satisfy some conditions and then we explicit that
these characterizations also work to characterize SPEs outcomes if the objective
functions are continuous in addition to satisfying the previous conditions.



CHAPTER 4

COALITIONAL GAMES AND EXTENDED
REACHABILITY GAMES

In order to properly define the labeling functions which exactly characterize
NEs outcomes and weak SPEs outcomes, we need to refer to some related
games: coalitional games and extended (Reachability) games.

4.1 Coalitional games

Given a multiplayer game G, for each player i ∈ Π, we study the game in
which Player i plays against the coalition of the other players. This game Gi
is a zero-sum game and is called the coalitional game for Player i.

Definition 4.1.1 (Coalitional game). Let G = (A,Obj) be a multi-
player game. For each i ∈ Π, we build the zero-sum game Gi =

(Ai, (CostMin,GainMax)) such that:

Gain function: If the objective function of Player i is a gain function Gaini,
then Player Max is Player i and Player Min is the coalition of the other
players −i. Thus, in particular:

• the arena Ai = (V,E, (VMin, VMax)) is such that VMax = Vi and
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VMin =
⋃

j∈Π\{i}

Vj ;

• GainMax = CostMin = Gaini.

To ease the notation, we also write Gi = (Ai,Gaini) to denote this
coalitional game.

Cost function: If the objective function of Player i is a cost function Costi,
then Player Min is Player i and Player Max is the coalition of the other
players −i. Thus, in particular:

• the arena Ai = (V,E, (VMin, VMax)) is such that VMin = Vi and
VMax =

⋃
j∈Π\{i}

Vj ;

• CostMin = GainMax = Costi.

To ease the notation, we also write Gi = (Ai,Costi) to denote this
coalitional game.

The zero-sum game Gi is called the coalitional game for Player i.

Since a coalitional game is a zero-sum game, all the notions and results
provided in Section 2.3 apply. In particular, given a multiplayer game G and
the coalitional game Gi for Player i, if Gi is determined, we may consider the
value of a vertex v ∈ V in Gi. We denote this value Vali(v) in order to highlight
that it is the zero-sum game Gi which is considered.

Definition 4.1.2 (Value in a coalitional game). Given a multiplayer game
G, a player i ∈ Π and Gi the coalitional game for Player i. If Gi is determined,
for all v ∈ V , we write Vali(v) to denote the value of vertex v in Gi.

Example 4.1.3. A multiplayer quantitative Reachability game G =

(A, (QR1,QR2), (F1, F2)) with two players is depicted in Figure 4.1. The
round vertices are owned by Player 1 whereas the square vertices are owned
by Player 2. The target sets of the players are respectively equal to F1 = {v2}
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(grey vertex), F2 = {v2, v5} (double circled vertices).

v5 v4 v0 v1 v6 v7

v2

v3

Figure 4.1: A multiplayer quantitative Reachability game: Player 1 (resp.
Player 2) owns round (resp. square) vertices and F1 = {v2} and F2 = {v2, v5}.

Since this is a game with two players, we consider the two corresponding
coalitional game: the coalitional game for Player 1 and the coalitional game
for Player 2.
Coalitional game for Player 1:

Let G1 = (A1,QR1) with F1 = {v2} be the coalitional game for Player 1,
this is a quantitative Reachability zero-sum game and it is depicted in Fig-
ure 4.2a. The rounded vertices (in green) are owned by Player 1 (aka Player Min)
and the rectangular vertices (in red) are owned by Player 2 (aka Player Max).

For all v ∈ V , the value Val1(v) is depicted in bold near the corresponding
vertex and are summarized in Table 4.1.
Coalitional game for Player 2:

Let G2 = (A2,QR2) with F2 = {v2, v5} be the coalitional game for Player 2,
this is a quantitative Reachability zero-sum game and it is depicted in Fig-
ure 4.2b. The rectangular vertices (in green) are owned by Player 2 (aka
Player Min) and the rounded vertices (in red) are owned by Player 1 (aka
Player Max).

For all v ∈ V , the value Val2(v) is depicted in bold near the corresponding
vertex and are summarized in Table 4.1.

4.2 Extended games

In this section we mainly focus on Reachability games: qualitative Reachability
games, quantitative Reachability games or weighted Reachability games. For
each kind of Reachability games, we may consider its extended version. The
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v5

+∞
v4

+∞
v0

+∞
v1

3

v6

2

v7

1
v2

0

v3 +∞

(a) Coalitional game for Player 1. This
is a quantitative Reachability zero-sum
game where F1 = {v2}.

v5

0

v4

+∞
v0

+∞
v1

+∞
v6

2

v7

1
v2

0

v3 +∞

(b) Coalitional game for Player 2. This
is a quantitative Reachability zero-sum
game where F2 = {v2, v5}.

Figure 4.2: Coalitional games related with the game depicted in Figure 4.1.

Table 4.1: Values in the coalitional games of the multiplayer quantitative
Reachability game illustred in Figure 4.1.

v0 v3 v1 v6 v7 v2 v4 v5

Val1 +∞ +∞ 3 2 1 0 +∞ +∞
Val2 +∞ +∞ +∞ 2 1 0 +∞ 0

vertices (v, I) of the extended game store a vertex v ∈ V as well as a subset
I ⊆ Π of players that have already visited their target sets.

Let us recall that in order to provide a generic definition of a Reachability
game whatever if it is a qualitative, quantitative or weigthted Reachability
game, we assume that a Reachability game is a game G = (A,Reach, (Fi)i∈Π)

with Reach = (Reachi)i∈Π and Fi ⊆ V is the target set of Player i for all i ∈ Π

and where Reach refers to qR, QR or WR if G is a qualitative, quantitative
or weighted Reachability game respectively. It allows us to obtain a generic
definition of its extended game.

Definition 4.2.1 (Extended game). Let G = (A,Reach, (Fi)i∈Π) be a
Reachability game with an (weighted) arena A = (Π, V, E, (Vi)i∈Π, (wi)i∈Π),
and let v0 be an initial vertex. The extended game of G is equal
to X = (X,ReachX , (FXi )i∈Π) with the (weigthed) arena X =

(Π, V X , EX , (V X
i )i∈Π, (w

X
i )i∈Π), such that:

• V X = V × 2Π

• ((v, I), (v′, I ′)) ∈ EX if and only if (v, v′) ∈ E and I ′ = I ∪ {i ∈ Π |
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v′ ∈ Fi}

• (v, I) ∈ V X
i if and only if v ∈ Vi

• (v, I) ∈ FXi if and only if i ∈ I

• for all i ∈ Π, wXi : EX → N0 is such that for all ((v, I), (v′, I ′)) ∈ EX ,
wXi ((v, I), (v′, I ′)) = wi(v, v

′);

• ReachX = (ReachXi )i∈Π and for all i ∈ Π, ReachXi is the objective
function Reachi used in the game X a.

The initialized extended game (X , x0) associated with the initialized Reach-
ability game (G, v0) is such that x0 = (v0, I0) with I0 = {i ∈ Π | v0 ∈ Fi}.

aWe use ReachX (resp. ReachXi ) when we want to highlight that the objective functions
are considered in the extended game with the sets FXi . Nevertheless, we could only write
Reach (resp. Reachi).

Remark 4.2.2. Given a safety game G = (A,Safe, (Fi)i∈Π), we can also consider
its extended game X = (X,SafeX , (FXi )i∈Π) defined as in Definition 4.2.1
except that (i) there is no weight functions wi and wXi , and (ii) the objective
functions Reachi and ReachXi , for all i ∈ Π, are replaced by Safei and SafeXi
respectively. For all i ∈ Π, the gain function SafeXi is a safety objective
associated with the sets (FXi )i∈Π in the extended game X .

Remark 4.2.3. To ease the notations, if x ∈ V X is such that x = (v, I) for
some v ∈ V and I ⊆ Π, we sometimes write I(x) to denote the set I of players
that have already visited their target sets in x.

Firstly, notice that if Reach is qR or QR the weight functions (wi)i∈Π and
so (wXi )i∈Π are omitted.

Secondly, if G is a qualitative, quantitative, weigthed Reachability game,
then its extended game is also a qualitative, quantitative, weighted Reachabil-
ity game. In the same way, if G is a Safety game, then its extended game is a
Safety game.

Thirdly, remark the way each target set FXi is defined: if v ∈ Fi, then
(v, I) ∈ FXi but also (v′, I ′) ∈ FXi for all (v′, I ′) ∈ Succ∗(v, I).
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Example 4.2.4. The extended game (X , x0) of the multiplayer quantitative
Reachability drawn in Figure 4.1 is depicted in Figure 4.3 (only the part reach-
able from the initial vertex x0 = (v0, ∅) is drawn). The gray vertices represent
the target set FX1 of Player 1 as the double circled vertices represent the target
set FX2 of Player 2.

v0, ∅ v1, ∅ v6, ∅ v7, ∅

v3, ∅

v4, ∅

v5, {2} v4, {2} v0, {2} v1, {2} v6, {2} v7, {2}

v3, {2}

v2, {1, 2}

v0, {1, 2} v1, {1, 2} v6, {1, 2} v7, {1, 2}

v3, {1, 2}

v4, {1, 2}v5, {1, 2}

Figure 4.3: The extended game (X , x0) of the initialized quantitative Reacha-
bility game (G, v0) of Figure 4.1.

Remark 4.2.5. Even if the construction of (X , x0) from (G, v0) causes an expo-
nential blow-up of the number of states, the extended game of a Reachability
or Safety game enjoys some useful properties.

I-monotonicity For each ρ = (v0, I0)(v1, I1) . . . ∈ PlaysX(x0), we have the
next property called I-monotonicity :

Ik ⊆ Ik+1 for all k ∈ N. (4.1)

One-to-one correspondence 1 Given an initialized Reachability or Safety
game (G, v0) and its extended game (X , x0), there is a one-to-one corre-
spondence between plays in PlaysA(v0) and plays in PlaysX(x0):
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• from ρ = ρ0ρ1 . . . ∈ PlaysA(v0), we derive ρX = (ρ0, I0)(ρ1, I1) . . . ∈
PlaysX(x0) such that Ik is the set of Players i such that Fi is visited
along ρ≤k;

• from ρ = (v0, I0)(v1, I1) . . . ∈ PlaysX(x0), we derive ρA = v0v1 . . . ∈
PlaysA(v0) such that the second components Ik, k ∈ N, are omitted.

One-to-one correspondence 2 Third, given ρ ∈ PlaysA(v0), we have that
ReachX(ρX) = Reach(ρ), and conversely given ρ ∈ PlaysX(x0), we have
that Reach(ρA) = ReachX(ρ). The same property holds by replacing
Reach by Safe and ReachX by SafeX . It follows that outcomes of SPEs
(resp. NEs) can be equivalently studied in (G, v0) and in (X , x0), as
stated in the next lemma.

Lemma 4.2.6.

Reachability game Given an initialized Reachability game (G, v0) and its
initialized extended game (X , x0), if ρ is the outcome of an SPE (resp.
NE) in (G, v0), then ρX is the outcome of an SPE (resp. NE) in (X , x0)

with Reach(ρ) = ReachX(ρX). Conversely, if ρ is the outcome of an
SPE (resp. NE) in (X , x0), then ρA is the outcome of an SPE (resp.
NE) in (G, v0) with Reach(ρA) = ReachX(ρ).

Safety game Given an initialized Safety game (G, v0) and its initialized ex-
tended game (X , x0), if ρ is the outcome of an SPE (resp. NE) in
(G, v0), then ρX is the outcome of an SPE (resp. NE) in (X , x0) with
Safe(ρ) = SafeX(ρX). Conversely, if ρ is the outcome of an SPE (resp.
NE) in (X , x0), then ρA is the outcome of an SPE (resp. NE) in (G, v0)

with Safe(ρA) = SafeX(ρ).

Notice that in the same way there is a one-to-one correspondence between
strategies in (G, v0) and in its extended game (X , x0). Thus Lemma 4.2.6 could
be rephrased in term of SPEs (resp. NEs) instead of SPEs outcomes (resp. NEs
outcomes).

Another property of extended games is that in the extended game the
objective functions QRi and WRi become strongly prefix-linear and qRi and
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Safei become prefix-independent (and so strongly prefix-linear).

Proposition 4.2.7. Let G = (A,Obj, (Fi)i∈Π) be either a Reachability game
or a Safety game and let X = (X,ObjX , (FXi )i∈Π)) be its extended game.

1. If Obj = qR, then for all i ∈ Π, qRXi is prefix-independent in X;

2. If Obj = Safe, then for all i ∈ Π, SafeXi is prefix-independent in X;

3. If Obj = QR (resp. Obj = WR), then for all i ∈ Π, QRX
i (resp.

WRX
i ) is strongly prefix-linear in X.

Proof. Let G = (A,Obj, (Fi)i∈Π) be either a Reachability game or a Safety
game and let X = (X,ObjX , (FXi )i∈Π)) be its extended game.

1. Let us assume that Obj = qR (resp. Safe), let i ∈ Π be a player, we
have to prove that qRX

i (resp. SafeXi ) is prefix-independent in X. Let
hv ∈ HistX be a history such that hv = h0 . . . hk for some k ∈ N. We
have to prove that for all ρ ∈ PlaysX(v), qRX

i (hρ) = qRX
i (ρ) (resp.

SafeXi (hρ) = SafeXi (ρ)).

• If there exists 0 ≤ n ≤ k such that i ∈ I(hn) that means that for all
x ∈ Succ∗(hn), i ∈ I(x) (by I-monotonicity). Thus in particular
i ∈ I(v). It implies that qRX

i (hρ) = 1 (resp. SafeXi (hρ) = 0) and
qRX

i (ρ) = 1 (resp. SafeXi (ρ) = 0).

• Otherwise we have that the gain of Player i only depends whether
FXi is visited along ρ or not. Hence we obtain qRX

i (hρ) = qRX
i (ρ)

(resp. SafeXi (hρ) = SafeXi (ρ)).

2. Let us assume that Obj = QR or Obj = WR. Let i ∈ Π be a player,
since QRi is a particular case of WRi, we only have to prove that WRX

i

is strongly prefix-linear in X. Let hv ∈ HistX be a history such that
hv = h0 . . . hk for some k ∈ N:

• If there exists 0 ≤ ` ≤ k such that i ∈ I(h`), i.e, hv visits FXi ,
let us assume that ` is the least such index: we choose a(h, v) =
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`−1∑
n=0

wi(hn, hn+1)a and b(h, v) = 1. Indeed, if i ∈ I(h`), then i ∈

I(v) (by I-monotonicity). Hence for all ρ ∈ PlaysX(v), WRX
i (ρ) =

0. It follows that for all ρ ∈ PlaysX(v), WRX
i (hρ) = a(h, v) +

b(h, v) ·WRX
i (ρ) = a(h, v) =

`−1∑
n=0

wi(hn, hn+1).

• Otherwise: we choose a(h, v) =
k−1∑
n=0

wi(hn, hn+1) and b(h, v) = 1.

For all ρ ∈ PlaysX(v), we have that WRX
i (hρ) = a(h, v) + b(h, v) ·

WRX
i (ρ) =

k−1∑
n=0

wi(hn, hn+1) + WRX
i (ρ).

aWith the assumption that if ` = 0,
∑`−1
n=0 wi(hn, hn+1) = 0.





CHAPTER 5

λ-CONSISTENT PLAYS

In order to characterize equilibria outcomes, we need to define a criterion which
has to be satisfied by the plays which are effectively outcomes of equilibria.
Both for Nash equilibria, weak subgame perfect equilibria and subgame perfect
equilibria, the criterion in this document is based on the notion of λ-consistent
play where λ is a function which labels the vertices of the game graph with
some appropriate values. We explain how to obtain these values in Chapter 6
and Chapter 7.

In this chapter, we only define the notions of labeling function and λ-
consistent plays. Since the notion of λ-consistent play is one of the central
notions of our approach in the rest of the document, we have chosen to devote
an entire chapter to only introduce this concept.

5.1 Labeling Function and λ-Consistency

Given an arena A, a labeling function λ is a function which assigns a value to
each vertex of this arena.

Definition 5.1.1 (Labeling function). Given an arena A, the function λ :

V → R ∪ {−∞,+∞} which assigns a value to each vertex of A is a labeling
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function.

Given a game G = (A,Cost), a labeling function λ : V → R ∪ {−∞,+∞}
and a play ρ ∈ Plays we say that ρ is consistent with λ if all the suffixes of ρ
satisfy the constraints given by the labeling function λ.

Definition 5.1.2 (λ-consistent play). Given a game G = (A,Cost), a label-
ing function λ : V → R ∪ {−∞,+∞} and a plays ρ = ρ0ρ1 . . . ∈ Plays, ρ is
λ-consistent if

∀i ∈ Π, ∀n ∈ N,
(
ρn ∈ Vi =⇒ Costi(ρ≥n) ≤ λ(ρn)

)
.

If ρ is λ-consistent, we write ρ |= λ. Otherwise, we write ρ 6|= λ.

Example 5.1.3. We come back to the multiplayer quantitative Reachability
game depicted in Figure 4.1. A labeling function λ : V → N ∪ {+∞} is given
in Figure 5.1 where for all v ∈ V , λ(v) is written near the vertex v. These
values are summarized in the following table.

v0 v1 v2 v3 v4 v5 v6 v7

λ +∞ 3 0 +∞ +∞ +∞ 2 1

v5

+∞
v4

+∞
v0

+∞
v1

3

v6

2

v7

1
v2

0

v3 +∞

Figure 5.1: Multiplayer quantitative Reachability game of Figure 4.1 labeled
by a labeling function λ.

The play (v0v4)ω is λ-consistent. Indeed, if we write (v0v4)ω = ρ0ρ1 . . ., let
n ∈ N, if n is even, then ρn = v0 and ρn ∈ V2. In this case, Cost2(ρ≥n) =

Cost2((v0v4)ω) = +∞ and λ(ρn) = +∞ so the inequality Cost2(ρ≥n) ≤ λ(ρn)

is satisfied. In the same way, if n is odd, then ρn = v4 and ρn ∈ V1. In this
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case, Cost1(ρ≥n) = Cost1((v4v0)ω) = +∞ and λ(v4) = +∞ so the inequality
Cost1(ρ≥n) ≤ λ(ρn) is satisfied.

The play (v0v1v3)ω is not λ-consistent. Let us assume that (v0v1v3)ω =

ρ0ρ1 . . ., we have that Cost1(ρ≥1) = Cost1((v1v3v0)ω) = +∞ and λ(ρ1) =

λ(v1) = 3, it follows that Cost1(ρ≥1) > λ(ρ1).





CHAPTER 6

NE OUTCOME CHARACTERIZATION

This chapter provides a Nash equilibrium outcome characterization for some
classes of games. In Section 6.1, we first formally define the labeling function
Val*. Secondly, we prove that if the cost functions satisfy some hypotheses
and if the associated coalitional games are determined with positional optimal
strategies for both players, then a play is the outcome of a Nash equilibrium
if and only if it is Val*-consistent. This characterization holds in particular
for games with strongly prefix-linear cost functions. Since reachability objec-
tives (qualitative, quantitative and weighted) are not strongly prefix-linear,
we explain in Section 6.2 how to adapt this characterization to Reachability
games.

6.1 General Characterization

Let G be a multiplayer game such that, for all i ∈ Π, the coalitional game Gi is
determined, we define the labeling function Val* in the following way: if v ∈ V
is a vertex of Player i, then Val*(v) = Vali(v).

Definition 6.1.1 (Val*-labeling function). Given a multiplayer game G such
that for all i ∈ Π, the coalitional game Gi for Player i is determined, we define
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the labeling function Val* : V → R ∪ {−∞,+∞} such that for all v ∈ V , if
v ∈ Vi, then Val*(v) = Vali(v).

If the initialized multiplayer game (G, v0) = (A,Cost) satisfies some condi-
tions, this labeling function allows to determine whether a play ρ ∈ Plays(v0)

is the outcome of a Nash equilibrium in (G, v0).

Theorem 6.1.2 (Nash equilibrium outcome characterization). Given an ini-
tialized multiplayer game (G, v0) = (A,Cost). If,

(C1) For all i ∈ Π, all hv ∈ Hist and for all ρ, ρ′ ∈ Plays(v): Costi(ρ) ≥
Costi(ρ

′) =⇒ Costi(hρ) ≥ Costi(hρ
′);

(C2) For all i ∈ Π, all hv ∈ Hist and for all ρ, ρ′ ∈ Plays(v): Costi(ρ) >

Costi(ρ
′) =⇒ Costi(hρ) > Costi(hρ

′);

(C3) For all i ∈ Π, the coalitional game Gi for Player i is determined
and there exist a memoryless optimal strategy σ∗i for Player i (aka
Player Min) and a memoryless optimal strategy σ∗−i for Player −i (aka
Player Max);

then, given a play ρ ∈ Plays(v0), the following assertions are equivalent:

1. there exists an NE σ in (G, v0) such that 〈σ〉v0 = ρ;

2. the play ρ is Val*-consistent.

Remark 6.1.3. Notice that conditions (C1) and (C2) are satisfied if the cost
functions are strongly prefix-linear in A (Lemma 2.2.20). It follows, by Propo-
sition 2.3.8 and Proposition 2.3.13, that the conditions of Theorem 6.1.2 are
satisfied by

• multiplayer Büchi, co-Büchi and Parity games;

• multiplayer discounted-sum games and mean-payoff games.

Thus, for these games, the set of plays beginning in v0 which are Val*-
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consistent is exactly the set of plays which are NEs outcomes in (G, v0). That is
{ρ ∈ Plays(v0) | ρ |= Val*} = {ρ ∈ Plays(v0) | ∃ σ an NE in (G, v0) st. 〈σ〉v0 =

ρ}.
Remark 6.1.4. Some other characterizations rely on other very similar condi-
tions (e.g., [Bru17]) but our aim is not to provide an exhaustive characteri-
zation since the one enunciated in Theorem 6.1.2 is sufficient to obtain our
results in the remaining part of this document.

For the sake of completeness and in order to ease the proof of Corollary 6.1.5
we provide a detailed proof of Theorem 6.1.2. The main idea is that if the
second assertion is false, then there exists a player i who has an incentive to
deviate along ρ. Indeed, if there exists k ∈ N such that Costi(ρ≥k) > Vali(ρk)

(ρk ∈ Vi) it means that Player i can ensure a better cost for him even if the
other players play in coalition and in an antagonistic way. Thus, Player i has
a profitable deviation. For the second implication, the Nash equilibrium σ is
defined as follows: all players follow the outcome ρ but if one player, assume
it is Player i, deviates from ρ the other players form a coalition −i and punish
the deviator by playing the optimal strategy of Player −i in the coalitional
game Gi.

Proof of Theorem 6.1.2. Let (G, v0) be an initialized multiplayer game which
satifies conditions (C1), (C2) and (C3). Let ρ ∈ Plays(v0) be a play such
that ρ = ρ0ρ1 . . ..

Let us begin with some remarks. Since for all i ∈ Π, Gi is determined
and there exist memoryless optimal strategies σ∗i and σ∗−i for Player i and
Player −i respectively. For all v ∈ V , by Lemma 2.3.12, we have:

inf
σi∈ΣMin

Costi(〈σi, σ∗−i〉v) = Vali(v) = sup
σ−i∈ΣMax

Costi(〈σ∗i , σ−i〉v). (6.1)

From the memoryless optimal strategy σ∗−i in Gi we can extract a memoryless
strategy σ∗j,i of Player j in G. Notice also that even if σ∗i is a strategy in Gi,
we can use it as a strategy of Player i in G.
Let us prove the equivalence between the two assertions of Theorem 6.1.2.

(1⇒ 2): Let σ be a Nash equilibrium in (G, v0) such that 〈σ〉v0 = ρ. Let us
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assume, by contradiction, that ρ is not Val*-consistent:

there exist i ∈ Π and k ∈ N such that ρk ∈ Vi and:

Costi(ρ≥k) > Vali(ρk). (6.2)

Let h = ρ0 . . . ρk−1, we can write:

Costi(ρ≥k) = Costi(〈σ�h〉ρk). (6.3)

Additionally, by Equation (6.1) and thanks to the fact that the optimal
strategies are memoryless:

Vali(ρk) = sup
τ−i∈ΣMax

Costi(〈σ∗i , τ−i〉ρk)

≥ Costi(〈σ∗i , σ−i�h〉ρk) (6.4)

where σ∗i is the optimal strategy of Player i in Gi and σ−i is an abuse
of notation to depict the strategy of the coalition −i = Π\{i} which
follows strategies σj for all j 6= i.

By (6.2), (6.3) and (6.4), it follows that:

Costi(〈σ∗i , σ−i�h〉ρk) < Costi(〈σ�h〉ρk).

By condition (C2), we can conclude that:

Costi(h〈σ∗i , σ−i�h〉ρk) < Costi(h〈σ�h〉ρk) = Costi(ρ). (6.5)

This means that following σi along h and then σ∗i once he reaches ρk
is a profitable deviation for Player i. This concludes the proof.

(2⇒ 1): Let us assume that ρ is Val*-consistent and let us prove that there
exists a Nash equilibrium σ in (G, v0) such that 〈σ〉v0 = ρ. Let τ be a
strategy profile such that 〈τ〉v0 = ρ. From τ we aim to construct a Nash
equilibrium with the same outcome. The main idea is the following one:
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first, all players play according to τ . But if a player, let us call him
Player i deviates from τi, the other players form a coalition and each
of them plays his strategy obtained from the strategy σ∗−i in Gi.

In order to define properly the Nash equilibrium that we are looking
for, we have to define a punishment function P : Hist(v0) → Π ∪ {⊥}
which allows us to know who is the player who has deviated for the
first time from τ . So, for all h ∈ Hist(v0), P (h) =⊥ if no player has
yet deviated and P (h) = i for some i ∈ Π if Player i is the first player
who has deviated along h. We can define P as follows: for the initial
vertex P (v0) =⊥ and then for all history hv ∈ Hist(v0) with v ∈ V :

P (hv) =


⊥ if P (h) =⊥ and hv is a prefix of ρ,

i if P (h) =⊥ , hv is not a prefix of ρ and h ∈ Histi,

P (h) otherwise.

We now define σ. For all i ∈ Π and for all h ∈ Histi(v0):

σi(h) =


τi(h) if P (h) =⊥,

σ∗i (h) if P (h) = i,

σ∗i,P (h)(h) otherwise.

It is clear that 〈σ〉v0 = ρ. It remains to prove that σ is a Nash equi-
librium in (G, v0). Let us assume that σ is not an NE. It means that
there exists a profitable deviation depicted by σ̃i for some player i ∈ Π.
Let ρ̃ = 〈σ̃i, σ−i〉v0 the outcome such that Player i plays his profitable
deviation. As σ̃i is a profitable deviation we have:

Costi(ρ̃) < Costi(ρ). (6.6)

Moreover as ρ and ρ̃ both begin in v0, they have a common prefix.
Let hv ∈ Histi the longest common prefix of ρ and ρ̃. We have that:
ρ = h〈σ�h〉v and ρ̃ = h〈σ̃i�h, σ−i�h〉v. But, by definition of σ and
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as the optimal strategies in Gi are memoryless, we can rewrite these
two equalities as follows: ρ = h〈τ�h〉v and ρ̃ = h〈σ̃i�h, (σ∗j,i)j∈Π\{i}〉v.
Additionally, by Equation (6.1):

Vali(v) = inf
µi∈ΣMin

Costi(〈µi, σ∗−i〉v)

≤ Costi(〈σ̃i�h, σ∗−i〉v)
= Costi(〈σ̃i�h, (σ∗j,i)j∈Π\{i}〉v)
= Costi(〈σ̃i�h, σ−i�h〉v) (6.7)

By hypothesis, ρ is Val*-consistent, thus we have that

Vali(v) ≥ Costi(〈τ�h〉v) (6.8)

Thus by (6.7), it follows that:

Costi(〈σ̃i�h, σ−i�h〉v) ≥ Costi(〈τ�h〉v).

And thanks to condition (C1), we have that:

Costi(ρ̃) = Costi(h〈σ̃i�h, τ−i�h〉v)
≥ Costi(h〈τ�h〉v).
= Costi(ρ).

Which leads to a contradiction with (6.6) and concludes the proof.

Theorem 6.1.2 and its previous proof can be easily adapted to lassoes as
follows.

Corollary 6.1.5 (of Theorem 6.1.2). Let (G, v0) be a multiplayer game such
that conditions (C1), (C2) and (C3) of Theorem 6.1.2 are satisfied. Given
ρ = h`ω ∈ Plays(v0) a lasso, the following assertions are equivalent:

1. there exists an NE σ with memory in O(|h`|+|Π|) and such that 〈σ〉v0 =
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ρ.

2. the play ρ is Val*-consistent.

Proof sketch. Let us now assume that ρ = h`ω is a lasso. The implication
1⇒ 2 is the same as in the previous proof. Thus we only have to prove
that, in the implication 2⇒ 1, the previously built strategy σ has memory
in O(|h`| + |Π|). The intuition is the following. If ρ = h`ω, a player has
to remember: (i) h` to know both what he has to play and if someone has
deviated and (ii) who is the deviator. Once a deviation has occured, both
players play memoryless strategies.

Example 6.1.6. We consider the initialized multiplayer Büchi game (G, v0) =

(A,Buchi, (F1, F2)) such that its arena is depicted in Figure 6.1 where Player 1

(resp. Player 2) owns rounded vertices (resp. rectangular vertices) and with
the target sets F1 = {v1} and F2 = {v3, v5}.

v0v1v2v3 v4

v5

v6

1111 1

0

0

Figure 6.1: Multiplayer Büchi game. In this example, Player 1 (resp. Player 2)
owns rounded (resp. rectangular) vertices and F1 = {v1} (resp. F2 = {v3, v5}).

The labeling function Val* is depicted in Figure 6.1, for each v ∈ V , Val*(v)

is written in bold near the vertex v and these values are summarized in the
following table.

v0 v1 v2 v3 v4 v5 v6

Val* 1 1 1 1 1 0 0

The play v0(v1v2)ω is not Val*-consistent thus it cannot be an NE outcome.
Indeed, Buchi2(v0(v2v1)ω) = 0 < 1 = Val*(v0).
The play v0v4v

ω
5 is Val*-consistent. Indeed, Buchi2(v0v4v

ω
5 ) = 1 ≥ 1 =
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Val*(v0), Buchi2(v4v
ω
5 ) = 1 ≥ 1 = Val*(v4) and if we write v0v4v

ω
5 as ρ0ρ1 . . .,

for all n ≥ 2, Buchi1(ρ≥n) = Buchi1(vω5 ) = 0 ≥ 0 = Val*(v5). Thus v0v4v
ω
5 is

an NE outcome in (G, v0): for example, it is the outcome of the memoryless
strategy profile (σ1, σ2) from v0. This strategy profile is depicted by double
arrows in Figure 6.1. We can easily prove that (σ1, σ2) is an NE in (G, v0).

6.2 Characterization for Reachability Games

The NE outcome characterization provided in Theorem 6.1.2 does no apply
to multiplayer Reachability games (qualitative, quantitative or weighted). In-
deed, they do not fulfill condition (C2) of this theorem.

Nevertheless, let G = (A,Reach, (Fi)i∈Π) be a multiplayer Reachability
game and let X = (X,ReachX , (FXi )i∈Π) be its associated extended game,
we known that for all i ∈ Π, ReachXi is strongly prefix-linear in X (Proposi-
tion 4.2.7). It follows, by Lemma 2.2.20, that conditions (C1) and (C2) are
satisfied in the extended game. Additionally, by Proposition 2.3.8 and Propo-
sition 2.3.13, condition (C3) is also satisfied in the extended game.

From a theoretical point of view, that means that, thanks to Lemma 4.2.6,
if we want to study the outcomes of Nash equilibria in an initialized multi-
player Reachability game (G, v0) we can study the Val*-consistent plays of the
associated extended game. But from a practical point of view, that means
that one have to consider the associated extended game (X , x0) which has a
size exponential in the size of G and, in particular, to compute an exponential
number of values to obtain Val*.

Corollary 6.2.1 (of Theorem 6.1.2). Let (G, v0) = (A,Reach, (Fi)i∈Π)

be an initialized multiplayer Reachability game and let (X , x0) =

(X,ReachX , (FXi )i∈Π) be its associated extended game. Given a play ρ ∈
PlaysX(x0). The following assertions are equivalent:

1. there exists an NE σ in (X , x0) such that 〈σ〉x0 = ρ;

2. ρ is Val*-consistent.

To avoid this exponential blow-up, we explain in the remaining part of this
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section, how the definition of Val*-consistency may be slightly modified to be
directly applied to the Reachability game.

The difference is that, for a given player i ∈ Π, instead of checking that
the constraints given by the labeling function λ are satisfied by all the suffixes
of the play beginning in a vertex owned by Player i, we proceed in this way
until ρ visits the target set Fi. Indeed, once Player i has reached his target set
along ρ, his cost will no longer change.

In the following definition, given a history h ∈ Hist, the set Visit(h) depicts
the set of players that reach their target set along h, i.e., if h = h0 . . . hk for
some k ∈ N, Visit(h) = {i ∈ Π | ∃ 0 ≤ n ≤ k st. hn ∈ Fi}.

Definition 6.2.2 (Visitλ-consistent play). Let G = (A,Reach, (Fi)i∈Π) be
a multiplayer Reachability game. Let λ : V → R∪ {−∞,+∞} be a labeling
function and let ρ ∈ Plays. If for all i ∈ Π, for all n ∈ N:

(ρn ∈ Vi and i 6∈ Visit(ρ0 . . . ρn)) =⇒ Reachi(ρ≥n) ≤ λ(ρn)a

then we say that ρ is Visitλ-consistent.
aNotice that, here we assume that Reachi is a cost function (either QRi or WRi). The

counterpart for qRi is thus qRi(ρ≥n) ≥ λ(ρn) since that is a gain function.

This notion of Visitλ-consistency allows to obtain the counterpart of The-
orem 6.1.2 for Reachabililty games.

Theorem 6.2.3 (NE outcome characterization for Reachability games). Let
(G, v0) = (A,Reach, (Fi)i∈Π) be an initialized multiplayer Reachability game.
Given a play ρ ∈ Plays(v0), the following assertions are equivalent:

1. There exists an NE σ in (G, v0) such that 〈σ〉v0 = ρ;

2. The play ρ is Visit Val*-consistent.

Roughly speaking, the proof of this theorem is the same proof as the proof
of Theorem 6.1.2. Indeed, conditions (C1) and (C3) are satisfied by multiplayer
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Reachability games (Lemma 2.2.21, Proposition 2.3.8 and Proposition 2.3.13).
Hence, we only have to pay attention to (i) the use of the Visit Val*-consistency
concept instead of Val*-consistency; and (ii) how condition (C2) is used since
this latter condition is satisfied in Reachability games only if the target set of
the considered player is not visited along the prefix h.

Proof. Due to Lemma 2.2.21, Proposition 2.3.8 and Proposition 2.3.13, the
proof is the same as the proof of Theorem 6.1.2 with the exception of the
arguments that we have highlighted by boxes. Let us comment those slight
modifications.

(1⇒ 2) : 1. Equation (6.2) and the definition of ρ is not Val*-consistent
has to be replaced by: ρ is not Visit Val*-consistent: there exists
i ∈ Π and k ∈ N such that ρk ∈ Vi and i 6∈ Visit(ρ0 . . . ρk) and
Costi(ρ≥k) > Val*(ρk) = Vali(ρk).

2. Since h = ρ0 . . . ρk−1, we also have that i 6∈ Visit(h), thus by
Lemma 2.2.21, condition (C2) is also satisfied for Reachability
objectives and the inequality (6.5) still holds.

3. Other arguments to prove this implication do not change.

(2⇒ 1) : 1. The only modification for this implication is in Equation (6.8).
The Val*-consistency of play ρ has to be changed by Visit Val*-
consistency of play ρ. Notice that, since hv is a common prefix of
ρ and ρ′ and Costi(ρ̃) < Costi(ρ), i 6∈ Visit(hv). And thus, one
can also state that Vali(v) ≥ Costi(〈τ�h〉v).

2. Other arguments to prove this implication do not change.

Corollary 6.2.4 (of Theorem 6.2.3). et (G, v0) = (A,Reach, (Fi)i∈Π) be an
initialized multiplayer Reachability game. Given ρ = h`ω ∈ Plays(v0) a lasso,
the following assertions are equivalent:

1. there exists an NE σ with memory in O(|h`|+|Π|) and such that 〈σ〉v0 =

ρ.

2. the play ρ is Visit Val*-consistent.
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We conclude this section with an example.

Example 6.2.5. We come back to Example 4.1.3. Let us recall it is a mul-
tiplayer quantitative Reachability game G = (A, (QR1,QR2), (F1, F2)) with
two players. The game arena is depicted in Figure 4.1, the round vertices are
owned by Player 1 whereas the square vertices are owned by Player 2. The
target sets of the players are respectively equal to F1 = {v2} (grey vertex),
F2 = {v2, v5} (double circled vertices). The value of the labeling function Val*

may be obtained from Table 4.1. For the sake of clarity, we provide again the
arena of the game in Figure 6.2 and add the values of Val* in bold near the
corresponding vertex.

v5

+∞
v4

+∞
v0

+∞
v1

3

v6

2

v7

1
v2

0

v3 +∞

Figure 6.2: The multiplayer quantitative Reachability game of Example 4.1.3
enhanced with the values of Val*.

Let us consider the play ρ = (v0v4)ω and let us prove that this play is
Visit Val*-consistent. First of all, we have that for all n ∈ N, QR(ρ≥n) =

(+∞,+∞). Moreover, Val*(v0) = Val*(v4) = +∞. It easily follows that,
given i ∈ Π and n ∈ N such that ρn ∈ Vi and i 6∈ Visit(ρ0 . . . ρn), we have that
QRi(ρ≥n) ≤ Val*(ρn) = +∞. In particular it means that ρ is the outcome of
a Nash equilibrium in (G, v0).

In the same way, let us consider the play ρ′ = v0v1v6v7v2(v0v4)ω, let
us notice that both players reach their target set along ρ′ (in v2) and thus
QR(ρ′) = (4, 4). That means that we only have to prove these following in-
equalities:
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QR2(v0v1v6v7v2(v0v4)ω) ≤ Val*(v0)

QR1(v1v6v7v2(v0v4)ω) ≤ Val*(v1)

QR1(v6v7v2(v0v4)ω) ≤ Val*(v6)

QR1(v7v2(v0v4)ω) ≤ Val*(v7).

It is easy to check that those inequalities are true. Therefore, we conclude that
ρ′ is Visit Val*-consistent and the outcome of a Nash equilibrium in (G, v0).

Let us remark that ρ′ seems to be a more relevant equilibrium outcome
than ρ since both players visit their target set along ρ′ and not along ρ.

Finally, we prove that the play π = (v0v1v3)ω cannot be the outcome of a
Nash equilibrium in (G, v0) since it is not Visit Val*-consistent. Indeed, we have
that v1 ∈ V1 and 1 6∈ Visit(v0v1) but QR1(v1v3(v0v1v3)ω) = +∞ > Val*(v1) =

3.



CHAPTER 7

WEAK SPE AND SPE OUTCOME
CHARACTERIZATIONS

In Chapter 6, we have shown that for a wide class of multiplayer games, it is
possible to exactly characterize the set of outcomes of Nash equilibria. This
characterization relies on (i) the values of the vertices in the coalitional games
and (ii) the notion of Val*-consistent plays.

This chapter is mainly devoted to providing (i) a weak SPE outcome char-
acterization for some class of multiplayer games based on the same spirit as
the one of Chapter 6; (ii) a compact representation of weak SPEs; and (iii)
identify multiplayer games such that, as an interesting by-product, this weak
SPE outcome characterization allows also to characterize the set of outcomes
of SPEs. It is divided as follows.

Firstly, in Section 7.1, in order to obtain our weak SPE outcome character-
ization, we have to define a labeling function which exactly characterizes if a
play is the outcome of a weak SPE in the game. This labeling function, called
λ∗, is obtained as the fixpoint of an iterative procedure.

Secondly, in Section 7.2, we define the notion of good symbolic witness.
Roughly speaking, a good symbolic witness is a set of plays which respect
some “good” properties such that given such a good symbolic witness we are
able to build a weak SPE from those plays.

109
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Thirdly, in Section 7.3, we prove that there exists a weak SPE with a given
outcome if and only if this outcome is λ∗-consistent if and only if there exists
a good symbolic witness that contains this outcome.

Fourthly, in Section 7.4, we show how from the general characterizations
provided in the previous sections, we obtain characterizations of outcomes of
weak SPEs in the multiplayer games of our interest in the rest of this docu-
ment: multiplayer Boolean games with prefix-independent objective functions,
multiplayer qualitative Reachability games, multiplayer Safety games, multi-
player quantitative Reachability games and multiplayer weighted Reachability
games.

Finally, in Section 7.5, we explain how from the characterizations obtained
for weak SPEs outcomes, we obtain characterizations of outcomes of SPEs in
some kinds of games (e.g., in Reachability games).

7.1 λk labeling functions for weak SPEs

In this section, we explain how from a sequence of well-defined labeling func-
tions (λk)k∈N, we obtain a labeling function λ∗ such that the set of weak SPEs
outcomes exactly corresponds to the set of λ∗-consistent plays.

In Section 7.1.1, we begin by introducing some technical definitions and no-
tations needed to define the sequence of labeling functions (λk)k∈N. Those la-
beling functions are properly defined in Section 7.1.2. Finally, in Section 7.1.3,
we prove, under some hypotheses, a weak SPE outcome characterization based
on the fixpoint of the sequence (λk)k∈N of labeling functions.

7.1.1 (Good) local strongly prefix-linear constants set

Before being able to properly define the sequence of labeling functions (λk)k∈N,
we have to introduce some technical notions and notations.

Those notions are related to the notion of strongly prefix-linear cost func-
tion in an arena (Definition 2.2.16) but with a more local point of view. Given
a multiplayer game G = (A,Cost), for each i ∈ Π and each (v, v′) ∈ E, we
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consider the existence of a pair (ai(v, v′), bi(v, v′)) ∈ R × R+
0 such that for all

plays ρ beginning in v′, we have that Costi(vρ) = ai(v, v′) + bi(v, v′) ·Costi(ρ).

If such a pair exists for all i ∈ Π and (v, v′) ∈ E, one is fixed and added in
a set of tuples of the form (i, v, v′, ai(v, v′), bi(v, v′)) ∈ Π × V × V × R × R+

0 ,
which is called a good local strongly prefix-linear constants set. We now define
this concept formally.

Definition 7.1.1. Let G = (A,Cost) be a multiplayer game. Given i ∈ Π,
(v, v′) ∈ E, ai(v, v′) ∈ R and bi(v, v′) ∈ R+

0 .
If the following property is satisfied,

∀ ρ ∈ Plays(v′), Costi(vρ) = ai(v, v′) + bi(v, v′) · Costi(ρ) (7.1)

then, we say that the tuple (i, v, v′, ai(v, v′), bi(v, v′)) satisfies Property (7.1).

Definition 7.1.2 ((Good) local strongly prefix-linear constants set). Let
G = (A,Cost) be a multiplayer game.

1. A local strongly prefix-linear constants set (LSPLC set) associated with
G, denoted by CG , is a subset of Π × V × V × R × R+

0 such that, for
each i ∈ Π and each (v, v′) ∈ E:

• one tuple (i, v, v′, a, b) ∈ Π× V × V ×R×R+
0 is fixed and added

to CG ;

• by convention, once a CG is built, αi(v, v′) and βi(v, v′) refer re-
spectively to a and b in the tuple (i, v, v′, a, b) fixed for i and
(v, v′).

2. An LSPLC set CG associated with G is a good local strongly prefix-
linear constants set if each (i, v′, v′, αi(v, v′), βi(v, v′)) ∈ CG satisfies
Property (7.1).

If the cost functions of G are strongly prefix-linear in A, there exists a good
local strongly prefix-linear constants set associated with G.
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Lemma 7.1.3. Let G = (A,Cost) be a multiplayer game. If for all i ∈ Π,
Costi is strongly prefix-linear in A, then there exists a good LSPLC set CG
associated with G.

7.1.2 Definition of the λk-labeling functions

We are looking for a labeling function λ : V → R∪ {−∞,+∞} which imposes
constraints on the plays and such that the set of plays which satisfy those
constraints, that is the plays which are λ−consistent, is exactly the set of
weak SPEs outcomes.

Roughly speaking, our algorithm works as follows: the labeling function λ
that characterizes the set of SPEs outcomes is obtained from an initial labeling
function that imposes no constraint and by iterating an operator that reinforces
the constraints step after step, up to obtaining a fixpoint which is the required
function λ. Thus, if λk is the labeling function computed at step k and Λk(v),
v ∈ V , the related sets of λk-consistent plays beginning in v, initially we have
Λ0(v) = Plays(v), and step by step, the constraints imposed by λk become
stronger and the sets Λk(v) become smaller, until a fixpoint is reached.

Definition 7.1.4. Let G = (A,Cost) be a multiplayer game, let λk : V →
R ∪ {−∞,+∞} for some k ∈ N be a labeling function. For all v ∈ V , we
denote by Λk(v) the set of plays which begin in v and which are λk-consistent.
That is, for all v ∈ V :

Λk(v) = {ρ ∈ Plays(v) | ρ |= λk}.

We describe in Definition 7.1.5 how the labeling functions λk are iteratively
defined and provide some explanations just after.

General definition of λk

Definition 7.1.5. Given G = (A,Cost) a multiplayer game and given a
good LSPLC set CG associated with G. The labeling functions λk : V →
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R ∪ {−∞,+∞} for k ∈ N are defined by induction on k.
Let v ∈ V , if v ∈ Vi for some i ∈ Π:

• λ0(v) = +∞

• λk+1(v) = min
v′∈Succ(v)

{
αi(v, v′) + βi(v, v′) · sup{Costi(ρ) | ρ ∈ Λk(v′)}

}
v ∈ Vi

v′ . . . v′′

αi(v, v′) αi(v, v′′)

|= λk|= λk 6|= λk |= λk|= λk 6|= λk

. . . . . .

. . .. . . . . .. . .

βi(v, v′) · sup{Costi(ρ) | ρ ∈ Λk(v′)} βi(v, v′′) · sup{Costi(ρ) | ρ ∈ Λk(v′′)}

λk+1(v) = min
u∈Succ(v)

{
α
i
(v, u) + β

i
(v, u) · sup{Costi(ρ) | ρ ∈ Λ

k
(u)}

}

Initially, we want a labeling function λ0 that imposes no constraint on the
plays, thereby we define λ0 as the constant function +∞. When it is updated,
for each v ∈ V , if v ∈ Vi for some i ∈ Π, the value λk+1(v) represents what
is the best cost that Player i can ensure for himself from v with a “one-shot”
choice by only taking into account plays of Λk(v′) with v′ ∈ Succ(v).

Remark 7.1.6. Given v ∈ V , such that v ∈ Vi for some i ∈ Π, if there exists
an upper bound B ∈ R on the possible costs of plays beginning in v, i.e.,
∀ρ ∈ Plays(v), Costi(ρ) ≤ B, then λ0(v) could be initialized as λ0(v) = B.
Indeed, with this convention λ0 does not impose any constraint on plays either.
As a result, each play beginning in v is also λ0-consistent.

Remark 7.1.7. Notice that to define the labeling functions λk for all k ∈ N, we
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previously fix a good local strongly prefix-linear constants set CG associated
with the game G of interest. The reason is that, if for all i ∈ Π, Costi is
strongly prefix-linear, then such a good LSPLC set exists but is not always
unique. Indeed, for example, if for a given i ∈ Π and a given (v, v′) ∈ E, we
have that for all ρ ∈ Plays(v′), Costi(ρ) = 0 and if there exists a ∈ R and
b ∈ R+

0 such that for all ρ ∈ Plays(v′), Costi(vρ) = a+ b · Costi(ρ) then every
b′ ∈ R+

0 satisfies that for all ρ ∈ Plays(v′), Costi(vρ) = a+ b′ · Costi(ρ).

However, given i ∈ Π and v′ ∈ V , if there exist ρ, ρ′ ∈ Plays(v′) such that
Costi(ρ) = C and Costi(ρ

′) = C ′ for some C,C ′ such that (i) C 6= C ′ and (ii)
C 6= 0 and C ′ 6= 0, then there exists a unique a ∈ R and b ∈ R+

0 such that for
all ρ ∈ Plays(v′), Costi(vρ) = a+ b · Costi(ρ).

Given i ∈ Π and (v, v′) ∈ Plays(v′) such that there exists ρ ∈ Plays(v′),
Costi(ρ) = C such that C 6= 0 and there exists ρ′ ∈ Plays(v′) such that
Costi(ρ

′) = C ′ with C ′ 6= 0 and C ′ 6= C. If there exist a ∈ R and b ∈ R+
0 such

that for all π ∈ Plays(v′), Costi(vπ) = a + b · Costi(π), then (∃a′ ∈ R ∧ ∃b′ ∈
R+

0 st. ∀π ∈ Plays(v′), Costi(vπ) = a′ + b′ · Costi(π)) =⇒ a = a′ ∧ b = b′).

Let us assume that:

1. there exist a ∈ R and b ∈ R+
0 such that for all π ∈ Plays(v′), Costi(vπ) =

a+ b · Costi(π); and

2. there exist a′ ∈ R and b′ ∈ R+
0 such that for all π ∈ Plays(v′), Costi(vπ) =

a′ + b′ · Costi(π).

That means in particular that:Costi(vρ) = a+ b · C

Costi(vρ) = a′ + b′ · C

Costi(vρ
′) = a+ b · C ′

Costi(vρ
′) = a′ + b′ · C ′

Thus we obtain: (a− a′) = (b′ − b) · C

(a− a′) = (b′ − b) · C ′
.

and thus,we have that (a− a′) · (C ′−C) = 0. Since C ′ 6= C and C 6= 0, we
conclude that a′ = a and b′ = b.
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Moreover, in Part III, we use these labeling functions in particular kinds of
games thus we fix particular values to each αi(v, v′) and βi(v, v′). More details
and examples of the computation of (λk)k∈N are provided in Section 7.4.

We conclude this section with two properties on the sequence of labeling
functions (λk)k∈N. Lemma 7.1.8 states that the set of plays beginning in v

which are λ0-consistent exactly corresponds to the set of plays beginning in
v and Lemma 7.1.9 asserts that for all v ∈ V , the sequences (λk(v))k∈N and
(Λk(v))k∈V are non-increasing.

Lemma 7.1.8. Let G = (A,Cost) be a multiplayer game and let (λk)k∈N a
sequence of labeling functions as defined in Definition 7.1.5. For all v ∈ V ,
we have:

Λ0(v) = Plays(v).

Proof. Let G = (A,Cost) be a multiplayer game and let (λk)k∈N a sequence
of labeling functions as defined in Definition 7.1.5. Let v ∈ V be a vertex.
In view of the definition of Λ0(v), one obviously have that Λ0(v) ⊆ Plays(v).
Let ρ ∈ Plays(v), we have to prove that ρ |= λ0. That is:

∀i ∈ Π, ∀n ∈ N, (ρn ∈ Vi =⇒ Costi(ρ≥n) ≤ λ0(ρn)).

The fact that λ0(v) = +∞ for all v ∈ V concludes the proof.

Lemma 7.1.9. Let G = (A,Cost) be a multiplayer game and let (λk)k∈N be
a sequence of labeling functions as defined in Definition 7.1.5.
For all v ∈ V , the sequences (λk(v))k∈N and (Λk(v))k∈V are non-increasing.

In order to prove Lemma 7.1.9, we prove the following intermediate result.
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Lemma 7.1.10. Let G = (A,Cost) be a multiplayer game and let (λk)k∈N

be a sequence of labeling functions as defined in Definition 7.1.5.
Given k ∈ N, if for all v ∈ V , λk+1(v) ≤ λk(v), then for all v ∈ V , Λk+1(v) ⊆
Λk(v).

Proof. Let G = (A,Cost) be a multiplayer game and let (λk)k∈N be a sequence
of labeling functions as defined in Definition 7.1.5.
Let k ∈ N. Let us assume that for all v ∈ V , λk+1(v) ≤ λk(v). Let v ∈ V
and ρ ∈ Λk+1(v) be a λk+1-consistent play. That means that:

∀i ∈ Π, ∀n ∈ N, ρn ∈ Vi =⇒ Costi(ρ≥n) ≤ λk+1(ρn). (7.2)

Since for all v ∈ V , we have that λk+1(v) ≤ λk(v), from (7.2) we obtain:

∀i ∈ Π, ∀n ∈ N, ρn ∈ Vi =⇒ Costi(ρ≥n) ≤ λk(ρn).

That proves that ρ ∈ Λk(v).

Proof of Lemma 7.1.9. Let G = (A,Cost) be a multiplayer game and let
(λk)k∈N be a sequence of labeling functions as defined in Definition 7.1.5.

We will prove that for all k ∈ N, for all v ∈ V , λk+1(v) ≤ λk(v). We prove
this property by induction on k.

If k = 0: let v ∈ V , then the inequality λ1(v) ≤ λ0(v) = +∞ is satisfied.
Let us now assume that for all n ∈ N such that 0 ≤ n ≤ k: for all v ∈ V ,
λn+1(v) ≤ λn(v) is satisfied.
Let us prove it remains true for k + 1. Let v ∈ V , we have to prove that
λk+2(v) ≤ λk+1(v).

Let us assume that v ∈ Vi for some i ∈ Π. By definition of λk+1(v), there
exists v′ ∈ Succ(v) such that λk+1(v) = αi(v, v′) + βi(v, v′) · sup{Costi(ρ) |
ρ ∈ Λk(v)}.
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From the definition of λk+2 follows:

λk+2(v) = min
u∈Succ(v)

{
αi(v, u) + βi(v, u) · sup{Costi(ρ) | ρ ∈ Λk+1(u)}

}
≤ αi(v, v′) + βi(v, v′) · sup{Costi(ρ) | ρ ∈ Λk+1(v′)} (7.3)

By induction hypothesis, for all u ∈ V , λk+1(u) ≤ λk(u). Thereby, by
Lemma 7.1.10, we have that Λk+1(v′) ⊆ Λk(v′). Which allows to conclude,
from (7.3):

λk+2(v) ≤ αi(v, v′) + βi(v, v′) · sup{Costi(ρ) | ρ ∈ Λk+1(v′)}
≤ αi(v, v′) + βi(v, v′) · sup{Costi(ρ) | ρ ∈ Λk(v′)} (βi(v, v′) ≥ 0)

= λk+1(v).

It remains to prove that for all k ∈ N and all v ∈ V , Λk+1(v) ⊆ Λk(v). That
result follows from the previous proof and Lemma 7.1.10.

7.1.3 Weak SPE outcome characterization

In the previous section, we have explained how a sequence of labeling functions
(λk)k∈N is defined. We have also mentioned that this sequence of labeling
functions has to reach a fixpoint to exactly characterize the set of weak SPEs
outcomes. This notion of fixpoint is properly defined in the following definition.

Definition 7.1.11 (Existence of a fixpoint). Let G = (A,Cost) be a mul-
tiplayer game and let (λk)k∈N be a sequence of labeling function as defined
in Definition 7.1.5. If there exists k ∈ N such that for all m ∈ N and for all
v ∈ V :

λk+m(v) = λk(v). (7.4)

We say that (λk)k∈N reaches a fixpoint.
Moreover, the least natural number which satisfies the equality (7.4) is called
the fixpoint of (λk)k∈N and is denoted by k∗. In order to ease the notation
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we often write λ∗ (resp. Λ∗(v) for v ∈ V ) instead of λk∗ (resp. Λk
∗
(v) for

v ∈ V ).

Remark 7.1.12. Notice that in pratice, we only have to find k∗ ∈ N (as small
as possible) such that for all v ∈ V :

λk
∗+1(v) = λk

∗
(v).

Indeed, if such a natural number exists, it implies that for all m ∈ N and
for all v ∈ V :

λk
∗+m(v) = λk

∗
(v).

Additionally, for all i ∈ Π, for all k ∈ N and all v ∈ V such that Λk(v) 6= ∅,
we have to impose that the supremum of the Player i’s costs of the plays
beginning in v which are λk-consistent is a maximum. If it is the case, we say
that (λk)k∈N satisfies the existence of maxima property.

Definition 7.1.13 (Existence of maxima property). Let G = (A,Cost)

be a multiplayer game and let (λk)k∈N be a sequence of labeling func-
tions as defined in Definition 7.1.5. If for all i ∈ Π, for all v ∈ V ,
for all k ∈ N such that Λk(v) 6= ∅, there exists ρ ∈ Λk(v) such that
Costi(ρ) = sup{Costi(ρ

′) | ρ′ ∈ Λk(v)} then we say that (λk)k∈N satisfies
the existence of maxima property.
Moreover, for all i ∈ Π, for all v ∈ V and for all k ∈ N, we can write:

sup{Costi(ρ
′) | ρ′ ∈ Λk(v)} = max{Costi(ρ

′) | ρ′ ∈ Λk(v)}.

We are now able to enunciate our weak SPE outcome characterization.
Given an initialized multiplayer game (G, v0) = (A,Cost) and a sequence of
labeling functions (λk)k∈N as defined in Definition 7.1.5, if (i) for each i ∈
Π, Costi is strongly prefix-linear in A; (ii) (λk)k∈N satisfies the existence of
maxima property and (iii ) (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N,
then the set of plays beginning in v0 which are λ∗-consistent is equal to the set
of plays which are outcomes of weak SPEs in (G, v0).
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Proposition 7.1.14 (weak SPE outcome characterization). Let (G, v0) =

(A,Cost) be an initialized multiplayer game and let (λk)k∈N be a sequence of
labeling functions as defined in Definition 7.1.5 such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A;

(H2) (λk)k∈N satisfies the existence of maxima property;

(H3) (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N.

Then, given ρ ∈ Plays(v0), the following assertions are equivalent:

1. There exists a weak SPE σ in (G, v0) such that 〈σ〉v0 = ρ;

2. ρ is λ∗-consistent.

The proof of Proposition 7.1.14 is provided in Section 7.3. Examples of
utilizations of this characterization of the outcomes of weak SPEs may be
found in Section 7.4.

7.2 (Good) Symbolic witnesses for weak SPEs

In this section, we introduce the notion of (good) symbolic witness and explain
how from this concept we can characterize the set of weak SPEs outcomes.

Roughly speaking, a symbolic witness is a finite set of plays and a good
symbolic witness is a symbolic witness such that the plays respect some good
property. The intuition behind this property is the following: each time you
consider a play ρ in the good symbolic witness no player has an incentive to
deviate and to follow another play of the good symbolic witness. We will see
that a good symbolic witness is all we need to build a weak SPE. Moreover, if
each play of the good symbolic witness is a lasso, the weak SPE requires finite
memory and this good symbolic witness provides a finite representation of this
equilibrium.

In Section 7.2.1, we formally define the notion of good symbolic witness
and, in Section 7.2.2, we provide a weak SPE outcome characterization based
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on the notion of good symbolic witness.

7.2.1 (Good) Symbolic witnesses

Given an initialized multiplayer game (G, v0), we depict by I the set of pairs
(player,vertex) such that (i, v) ∈ I means that v is reachable in one step from
a vertex of Player i which is itself reachable from v0. An additional pair (0, v0)

is added for the initial vertex, notice that we assume that 0 does not represent
a player.

Definition 7.2.1. Let (G, v0) be an initialized multiplayer game. We define
the set I as follows:

I = {(0, v0)} ∪ {(i, v′) ∈ Π× V | ∃ v ∈ Succ∗(v0) ∩ Vi st. (v, v′) ∈ E}.

To each pair (i, v) ∈ I, a play ρ(i,v) is associated in order to obtain a set
of plays. This set contains at most |Π| · |V |+ 1 plays and is called a symbolic
witness.

Definition 7.2.2 (Symbolic witness). Given an initialized game (G, v0), a
symbolic witness P ⊆ Plays is a set of plays such that for all (i, v) ∈ I, a
play ρ(i,v) ∈ Plays(v) beginning in v is fixed and added to P.
In particular, | P | ≤ |Π| · |V |+ 1.

By convention, when we take a play ρ(i,v) ∈ P for some (i, v) ∈ I, we
assume that this is the play which has been previously fixed for the pair (i, v)

when the symbolic witness P was built.
A symbolic witness P is a representation of some strategy profile σ in

(G, v0). It is a finite set of plays that represent some subgame outcomes of
σ: the play ρ(0,v0) of P represents the outcome 〈σ〉v0 , and each other play
ρ(i,v′) represents the subgame outcome 〈σ�h〉v′ for some particular histories
hv′ ∈ Hist(v0). The index i records that Player i can move from v (the last
vertex of h) to v′ (with the convention that i = 0 for the outcome 〈σ〉v0).
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When σ is a weak SPE, the related symbolic witness P is good, that is, its
plays avoid profitable one-shot deviations between them.

Definition 7.2.3 (Good symbolic witness). Let P be a symbolic witness. If
for all ρ(j,w) ∈ P, for all i ∈ Π, for all k ∈ N, for all v′ ∈ Succ(ρ

(j,w)
k ),(

ρ
(j,w)
k ∈ Vi =⇒ Costi(ρ

(j,w)
≥k ) ≤ Costi(ρ

(j,w)
k ρ(i,v′))

)
, (7.5)

then P is called a good symbolic witness.

In Figure 7.1, we provide an illustration of the condition which should be
satisfied to be a good symbolic witness (see Definition 7.2.3).

w . . . ρ
(j,w)
k

∈ Vi

v′ . . .

. . .

ρ
(j,w)
≥k

ρ(j,w)

ρ(i,v′)

Figure 7.1: Illustration of condition (7.5) of Definition 7.2.3.

7.2.2 Weak SPE outcome characterization

Given an initialized multiplayer game (G, v0) = (A,Cost) such that for all
i ∈ Π, the cost function Costi of Player i is strongly prefix-linear, given a play
ρ ∈ Plays(v0), there is an equivalence between the existence of a good symbolic
witness P such that ρ(0,v0) = ρ and the existence of a weak SPE σ in (G, v0)

such that 〈σ〉v0 = ρ.
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Proposition 7.2.4. Let (G, v0) = (A,Cost) be an initialized multiplayer
game and let (λk)k∈N be a sequence of labeling functions as defined in Defi-
nition 7.1.5 such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A;

(H2) (λk)k∈N satisfies the existence of maxima property;

(H3) (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N.

Then, given ρ ∈ Plays(v0), the following assertions are equivalent:

1. There exists a weak SPE σ in (G, v0) such that 〈σ〉v0 = ρ;

2. There exists a good symbolic witness P such that the play ρ(0,v0) = ρ

with ρ(0,v0) ∈ P.

The proof of Proposition 7.2.4 is provided in Section 7.3. An example of
good symbolic witness associated with its related weak SPE may be found in
Section 7.4.

If we impose that each play of a symbolic witness is a lasso, we obtain a
finite symbolic witness: a finite good symbolic witness P is thus a compact
representation of a weak SPE with finite memory.

Definition 7.2.5 (Finite symbolic witness). Let P be a symbolic witness. If
for all ρ(i,v) ∈ P, ρ(i,v) is a lasso (there exist h ∈ Hist(v), ` ∈ Hist such that
h` ∈ Hist(v) and ρ(i,v) = h`ω), we say that P is a finite symbolic witness.

Notice that we can consider in the same way finite good symbolic witnesses.

Proposition 7.2.6. Let (G, v0) = (A,Cost) be an initialized multiplayer
game such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A;

If there exists a finite good symbolic witness P such that, for some L ∈ N: for
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all ρ(i,v) ∈ P, there exist h ∈ Hist(v) and ` ∈ Hist such that: h` ∈ Hist(v),
|h`| ≤ L and ρ(i,v) = h`ω, , then, there exists a finite-memory weak SPE σ

in (G, v0) with memory size in O(|Π| · |V | · L) and such that 〈σ〉v0 = ρ(0,v0).

The proof of Proposition 7.2.6 is provided in Section 7.3.

Remark 7.2.7. One could wonder if hypotheses (H2) and (H3) may be omitted
in the statement of Proposition 7.2.4.

7.3 Proofs of the weak SPE outcome characteriza-
tions

In order to prove the weak SPE outcome characterizations of Section 7.1.3 an
Section 7.2.2, we prove the following theorem.

Theorem 7.3.1. Let (G, v0) = (A,Cost) be an initialized multiplayer game
and let (λk)k∈N be a sequence of labeling functions as defined in Defini-
tion 7.1.5 such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A;

(H2) (λk)k∈N satisfies the existence of maxima property;

(H3) (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N.

Then, given ρ∗ ∈ Plays(v0), the following assertions are equivalent:

1. There exists a weak SPE σ in (G, v0) such that 〈σ〉v0 = ρ∗;

2. ρ∗ is λ∗-consistent, i.e., ρ∗ ∈ Λ∗(v0);

3. There exists a good symbolic witness P such that the play ρ(0,v0) = ρ∗

with ρ(0,v0) ∈ P.

Before this proof, we need to prove a technical result about the non emp-
tyness of Λ∗(v0).
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Lemma 7.3.2. Let (G, v0) = (A,Cost) be an initialized multiplayer game
and let (λk)k∈N be a sequence of labeling functions as defined in Defini-
tion 7.1.5.
If (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N, then we have that:

ρ ∈ Λ∗(v0) ⇐⇒ (ρ ∈ Λ∗(v0) ∧ ∀v ∈ Succ∗(v0), Λ∗(v) 6= ∅).

Proof. Let (G, v0) = (A,Cost) be an initialized multiplayer game and let
(λk)k∈N be a sequence of labeling functions as defined in Definition 7.1.5 and
let us assume that (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N,
We only prove the =⇒ implication.
Let ρ ∈ Λ∗(v0) be a λ∗-consistent play beginning in v0. We assume by
contradiction that there exists v ∈ Succ∗(v0) such that Λ∗(v) = ∅.
We prove, by induction on n, that for all n ∈ N, if u ∈ Predn(v), then
Λ∗(u) = ∅. With for all v ∈ V , Predn(v) is defined by induction as follows:Pred0(v) = {v}

Predn+1(v) = {u ∈ V | ∃(u, v′) ∈ E st. v′ ∈ Predn(v)}
.

For n = 0, Pred0(v) = {v}, thus for all u ∈ Pred0(v), Λ∗(u) = ∅ is true.
Let us assume the property is true for all ` ∈ N such that 0 ≤ ` ≤ n, and let
us prove it remains true for n+ 1.
Let u ∈ Predn+1(v), that means that there exists (u, v′) ∈ E such that
v′ ∈ Predn(v). By induction hypothesis, we have that Λ∗(v′) = ∅.
By definition of λ∗ and by assuming that u ∈ Vi for some i ∈ Π, we have:

λ∗(u) = λk
∗+1(u)

= min
u′∈Succ(u)

{
αi(u, u′) + βi(u, u′) · sup{Costi(ρ) | ρ ∈ Λk

∗
(u′)}

}
= −∞

The last equality holds because v′ ∈ Succ(u) and since Λ∗(v′) = ∅, we have
that αi(u, v′) + βi(u, v′) · sup{Costi(ρ) | ρ ∈ Λk

∗
(v′)} = −∞.
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We can conclude that Λ∗(u) = ∅. Indeed, otherwhise it would mean that
there exists ρ ∈ Plays(u) such that ρ |= λ∗. Thus in particular: Costi(ρ) ≤
λ∗(u) = −∞. That leads to a contradiction.
To conclude the proof, since v ∈ Succ∗(v0), there exists n ∈ N such that
v0 ∈ Predn(v). Thus, Λ∗(v0) = ∅. That is the contradiction we expected to
find.

Proof of Theorem 7.3.1. Let (G, v0) = (A,Cost) be an initialized multiplayer
game and let (λk)k∈N be a sequence of labeling functions as defined in Defi-
nition 7.1.5 such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A;

(H2) (λk)k∈N satisfies the existence of maxima property ;

(H3) (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N.

Let ρ∗ ∈ Plays(v0) be a play in (G, v0). We will prove 1 =⇒ 2 =⇒ 3 =⇒ 1.

(1 =⇒ 2): Let σ be a weak SPE in (G, v0) such that 〈σ〉v0 = ρ∗. We prove
the following property:

∀ k ∈ N, ∀hv ∈ Hist(v0), 〈σ�h〉v ∈ Λk(v).

It will be in particular true for k = k∗. Thus, it will follow that 〈σ〉v0 ∈ Λ∗(v0)

and for all hv ∈ Hist(v0), 〈σ�h〉v ∈ Λ∗(v). In particular, this latter result
proves that Λ∗(v) 6= ∅ for all v ∈ Succ∗(v0).

We proceed by induction on k.
If k = 0: let hv ∈ Hist(v0), the property is true since 〈σ�h〉v ∈ Plays(v) =

Λ0(v) by Lemma 7.1.8.
Let us assume that the property is true for all n ∈ N such that 0 ≤ n ≤ k.
Let us prove it remains true for k + 1:
By contradiction, let us assume that:

∃hv ∈ Hist(v0) such that 〈σ�h〉v 6∈ Λk+1(v). (7.6)
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Let ρ = 〈σ�h〉v.
That means by definition of λk+1-consistency:

∃i ∈ Π, ∃n ∈ N, such that ρn ∈ Vi and Costi(ρ≥n) > λk+1(ρn). (7.7)

By definition of λk+1,

λk+1(ρn) = min
v′∈Succ(ρn)

{
αi(ρn, v

′) + βi(ρn, v
′) · sup{Costi(ρ

′) | ρ′ ∈ Λk(v′)}
}

.
Then, there exists v′ ∈ Succ(ρn) such that:

λk+1(ρn) = αi(ρn, v
′) + βi(ρn, v

′) · sup{Costi(ρ
′) | ρ′ ∈ Λk(v′).}. (7.8)

Let h′ = hρ≤n−1
a.

Let us prove that there exists a strategy τi of Player i in (G�h′ , ρn) which
is a one-shot deviating strategy from σ�h′ and a profitable deviation for
Player i w.r.t. σ�h′ in (G�h′ , ρn). That proves that σ is not a very weak
SPE and thus not a weak SPE by Proposition 2.4.18. That is a contradiction.

Let τi be a strategy of Player i in (G�h′ , ρn) which is a one-shot deviating
strategy from σ�h′ such that τi(ρn) = v′.
Let us prove that τi is a profitable deviation for Player i w.r.t. σ�h′ in
(G�h′ , ρn). That is :

Costi(h
′〈τi, σ−i�h′〉ρn) < Costi(h

′〈σ�h′〉ρn).

By induction hypothesis, we have that 〈σ�h′ρn〉v′ ∈ Λk(v′). It follows:

Costi(〈σ�h′ρn〉v′) ≤ sup{Costi(ρ
′) | ρ′ ∈ Λk(v′)}.

Since βi(ρn, v′) ∈ R+
0 :

αi(ρn, v
′) + βi(ρn, v

′) · Costi(〈σ�h′ρn〉v′)
≤

αi(ρn, v
′) + βi(ρn, v

′) · sup{Costi(ρ
′) | ρ′ ∈ Λk(v′)}).
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Thus:

Costi(ρn〈σ�h′ρn〉v′) ≤ λk+1(ρn) (by (7.8))

< Costi(ρ≥n) (by (7.7)).

As Costi is strongly prefix-linear and by Lemma 2.2.20, it follows that:

Costi(h
′ρn〈σ�h′ρn〉v′) < Costi(h

′ρ≥n). (7.9)

Since τi is a one-shot deviating strategy, we have that Costi(h
′〈τi, σ−i�h′〉ρn) =

Costi(h
′ρn〈σ�h′ρn〉v′). Moreover, ρ≥n = 〈σ�h′〉ρn .

These two facts and (7.9) conclude the proof.
(2 =⇒ 3): Let us assume that ρ∗ ∈ Λ∗(v0) and that for all v ∈ Succ∗(v0),
Λ∗(v) 6= ∅ (Lemma 7.3.2).
We have to build a symbolic witness P and then to prove it is good.
We choose ρ(0,v0) = ρ∗.
Then for each (i, v) ∈ I, we choose ρ(i,v) ∈ Λ∗(v) such that

Costi(ρ
(i,v)) = max{Costi(ρ) | ρ ∈ Λ∗(v)} (7.10)

Notice that such a play ρ(i,v) exists by hypothesis.

Now we have to prove that P is a good symbolic witness.
Let ρ(i,v) ∈ P, let j ∈ Π, let k ∈ N, let v′ ∈ Succ(ρ

(i,v)
k ). We assume that

ρ
(i,v)
k ∈ Vj , we have to prove that:

Costj(ρ
(i,v)
≥k ) ≤ Costj(ρ

(i,v)
k ρ(j,v′)).

To ease the notations hereunder, we set a = αj(ρ
(i,v)
k , v′) and b = βj(ρ

(i,v)
k , v′).

By construction ρ(i,v) ∈ Λ∗(v) and k∗ is the fixpoint of (λk)k∈N, thus:
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Costj(ρ
(i,v)
≥k ) ≤ λ∗(ρ(i,v)

k ) = λk
∗+1(ρ

(i,v)
k )

= min
w∈Succ(ρ

(i,v)
k )

{
αj(ρ

(i,v)
k , w) + βj(ρ

(i,v)
k , w) ·max{Costj(π) | π ∈ Λ∗(w)}

}
≤ a+ b ·max{Costj(π) | π ∈ Λ∗(v′)} (v′ ∈ Succ(ρ

(i,v)
k ))

= a+ b · Costj(ρ
(j,v′)) (By (7.10) and (j, v′) 6= (0, v0))

= Costj(ρ
(i,v)
k ρ(j,v′)).

(3 =⇒ 1): Let us assume that P is a good symbolic witness with ρ(0,v0) =

ρ∗. We will build from P a weak SPE σ in (G, v0) such that 〈σ〉v0 = ρ(0,v0) =

ρ∗.
We define σ by induction on the subgames of (G, v0). First, we define σ such
that 〈σ〉v0 = ρ(0,v0). Then, let hvv′ ∈ Hist(v0) such that 〈σ�h〉v is already
properly defined but not yet 〈σ�hv〉v′ . By assuming that v ∈ Vi, for some
i ∈ Π, we extend the definition of σ in the following way:

〈σ�hv〉v′ = ρ(i,v′).

We prove that σ is a (very) weak SPE in (G, v0). Let hv ∈ Hist(v0), by
assuming that v ∈ Vi for some i ∈ Π, let τi be a one-shot deviating strategy
from σ�h in (G�h, v). Thus, in particular τi(v) = v′ 6= σi�h(v) for some v′ ∈
Succ(v). We have to prove:

Costi(h〈σ�h〉v) ≤ Costi(h〈τi, σ−i�h〉v).

By construction, since v′ 6= σi�h(v), 〈σ�hv〉v′ = ρ(i,v′).
There exists h′ ≤ h, such that h′ ∈ Histj(v0) for some j ∈ Π and h〈σ�h〉v =

h′ρ(j,w) for some w ∈ V . Moreover, there exists k ∈ N such that ρ(j,w)
k = v.

Thus, by the property of good symbolic witness:

Costi(ρ
(j,w)
≥k ) ≤ Costi(ρ

(j,w)
k ρ(i,v′))

= Costi(vρ
(i,v′))

= Costi(v〈σ�hv〉v′)



7.3 – Proofs of the weak SPE outcome characterizations 129

Since, Costi is strongly prefix-linear by hypothesis and thanks to
Lemma 2.2.20, it follows that:

Costi(hρ
(j,w)
≥k ) ≤ Costi(hv〈σ�hv〉v′).

As τi is a one-shot deviating strategy from σ�h, we have that
Costi(hv〈σ�hv〉v′) = Costi(h〈τi, σ−i�h〉v). This latter equality allows us to
conclude:

Costi(h〈σ�h〉v) ≤ Costi(h〈τi, σ−i�h〉v).

aIf n = 0, let h′ = h.

Proof of Proposition 7.1.14. Follows directly from Theorem 7.3.1.

Proof of Proposition 7.2.4. Follows directly from Theorem 7.3.1.

Proof of Proposition 7.2.6. Let (G, v0) = (A,Cost) be an initialized multi-
player game such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A;

Let us assume that there exists a finite good symbolic witness P such that,for
some L ∈ N: for all ρ(i,v) ∈ P, there exist h ∈ Hist(v) and ` ∈ Hist such that:
h` ∈ Hist(v), |h`| ≤ L and ρ(i,v) = h`ω.
In view of Theorem 7.3.1, we already know that it is possible to build from
P a weak SPE σ in (G, v0) such that 〈σ〉v0 = ρ(0,v0). It remains to prove
that if P is a finite good symbolic witness then σ is a finite-memory strategy
profile.

Let us prove that σ as built in the proof (3 =⇒ 1) of Theorem 7.3.1 is
finite-memory with memory size in O(|Π| · |V | · L).
For each ρ(i,v) ∈ P, we know that there exist h(i,v) ∈ Hist(v) and `(i,v) ∈ Hist

such that: h(i,v)`(i,v) ∈ Hist(v), |h(i,v)`(i,v)| ≤ L and ρ(i,v) = h(i,v)(`(i,v))ω.
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Having (j, u) in memory (the last deviating player j and the vertex u where he
moved), the strategy automatonMi, i ∈ Π, which represents the strategy σi,
has to produce the lasso ρ(j,u) = h(j,u)(`(j,u))ω with the length of h(j,u)`(j,u)

bounded by L. There are at most |Π| · |V | + 1 such lassoes. It leads to a
memory in O(|Π| · |V | · L).

Remark 7.3.3. All along this chapter we follow some implicit conventions:

• As in all this part we assume that the considered game G = (A,Cost) is
a multiplayer game such that the objective functions of the players are
cost functions;

• sup ∅ = −∞ and max ∅ = −∞;

• For all a ∈ R: a+ (+∞) = +∞ and a+ (−∞) = −∞;

• For all b ∈ R+
0 : b · (+∞) = +∞ and b · (−∞) = −∞.

• Additionally, we assume that for all i ∈ Π: Costi : Plays → R ∪ {+∞}.
If Costi may take −∞ as value, we should define sup ∅ and max ∅ in
another way. We could, for example, define an additional value ⊥ and
assuming that for all x ∈ R ∪ {−∞,+∞}, ⊥ < x. Then we could take
the convention that sup ∅ = max ∅ = ⊥.

7.4 Instantiations of the weak SPE outcome charac-
terizations

The point of this section is to illustrate how the general definition of the se-
quence of λk labeling functions (Definition 7.1.5) and thus the resulting general
weak SPE outcome characterizations (Theorem 7.3.1) may be applied to some
particular classes of games.

7.4.1 Boolean games with prefix-independent gain functions

Let us assume that G = (A,Gain) is a multiplayer Boolean game such that for
all i ∈ Π, Gaini is a gain function which is prefix-independent in A.
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For all i ∈ Π and for all (v, v′) ∈ E, we fix:

αi(v, v′) = 0

βi(v, v′) = 1

.
The obtained local strongly prefix-linear constants set CG is good. Indeed,

let i ∈ Π, let (v, v′) ∈ E and let ρ ∈ Plays(v′), we have that:

Gaini(vρ) = Gaini(ρ) (Gaini is prefix-independent)

= αi(v, v′) + βi(v, v′) ·Gaini(ρ).

Additionally, we know that for all i ∈ Π and for all ρ ∈ Plays: Gaini(ρ) ≥ 0.
In this way, we obtain the following definition of the λk labeling functions.

Definition of λk for Boolean games with prefix-independent gain func-
tions

Definition 7.4.1. Given G = (A,Gain) a multiplayer Boolean game
such that for all i ∈ Π, Gaini is a prefix-independent gain function in
A. The labeling functions λk : V → {0, 1} for k ∈ N are defined by
induction on k.
Let v ∈ V , if v ∈ Vi for some i ∈ Π:

• λ0(v) = 0

• λk+1(v) = max
v′∈Succ(v)

min{Gaini(ρ) | ρ ∈ Λk(v′)}.

In order to use the weak SPE outcome characterizations based on this
sequence of labeling functions, it remains to prove that (λk)k∈N (i) reaches a
fixpoint k∗ ∈ N and (ii) satisfies the existence of minima property. Since, the
image of Gaini is {0, 1}, (ii) is obviously satisfied. It remains to prove that
(λk)k∈N reaches a fixpoint.
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Lemma 7.4.2. There exists k∗ ∈ N such that for all m ∈ N and for all
v ∈ V , λk∗(v) = λk

∗+m(v) and k∗ is at most equal to |V |.

Proof sketch. In the initialization step, all the vertex values are equal to 0.
Then at each iteration, (i) if the value of a vertex was equal to 1 in the
previous step, then it stays equal to 1 all along the procedure and (ii) if the
value of the vertex was equal to 0 then it either stays equal to 0 (for this
iteration step) or it becomes equal to 1 (for all the next steps thanks to (i)).
At each step, at least one vertex value changes and when no value changes
the procedure has reached a fixpoint which corresponds to the values of λ∗.
Thus, it means that λ∗ is obtained in at most |V | steps.

We are now able to obtain a corollary of Theorem 7.3.1 in the particular
case of multiplayer Boolean games with prefix-independent gain functions.

Corollary 7.4.3 (of Theorem 7.3.1). Let (G, v0) = (A,Gain) be an initialized
multiplayer Boolean game such that for all i ∈ Π, Gaini is prefix-independent
in A and let (λk)k∈N the sequence of labeling functions provided in Defini-
tion 7.4.1.
Given ρ∗ ∈ Plays(v0), the following assertions are equivalent:

1. There exists a weak SPE σ in (G, v0) such that 〈σ〉v0 = ρ∗;

2. ρ∗ is λ∗-consistent;

3. There exists a good symbolic witness P such that the play ρ(0,v0) = ρ∗

with ρ(0,v0) ∈ P.

We now apply those weak SPE outcome characterizations on an example.

Example 7.4.4. Let us consider the multiplayer Büchi game depicted by
Figure 7.2. In this game, Player 1 (resp. Player 2) owns round (resp. square)
vertices and F1 = {v1} (resp. F2 = {v3, v5}). The numbers in bold are the
values of λ∗. Their iterative computation is given by the following table:
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v0 v1 v2 v3 v4 v5 v6

λ0 0 0 0 0 0 0 0
λ1 0 0 0 1 1 0 0

λ2 = λ∗ 1 0 0 1 1 0 0

.

Computation of λ∗: First, by definition of λ0: for all v ∈ V , λ0(v) = 0.
Then we have to compute λ1(v) for each v ∈ V . Notice that all plays are
λ0-consistent. We only focus on the computation of λ1(v0). In fact, λ1(v0)

is still 0. Indeed, v0 has v1 and v4 as successors and we take the maximum
between min{Buchi2(ρ) | ρ ∈ Plays(v1)} = 0 (since Buchi2((v1v2)ω) = 0) and
min{Buchi2(ρ) | ρ ∈ Plays(v4)} = 0 (since Buchi2(v4v

ω
6 ) = 0): this is 0. By as-

suming that we have computed λ1(v) for each v ∈ V , we now compute λ2(v) for
each v ∈ V . Let us look at v0: we compute min{Buchi2(ρ) | ρ ∈ Λ1(v1)} = 0

(since (v1v2)ω is λ1-consistent) and min{Buchi2(ρ) | ρ ∈ Λ1(v4)} = 1 (since
from v4 the only λ1-consistent play is v4v

ω
5 ). Notice that here there is a re-

striction on the considered plays. To obtain λ2(v0), it remains to take the
maximum between 0 and 1: this is 1. Other values do not change. Finally, by
computing λ3 we can easily see that a fixpoint is reached.

v0v1v2v3 v4

v5

v6

λ∗ = 1λ∗ = 0λ∗ = 0λ∗ = 1 λ∗ = 1

λ∗ = 0

λ∗ = 0

Figure 7.2: Example of a Boolean game with Büchi objectives. In this example,
Player 1 (resp. Player 2) owns round (resp. square) vertices and F1 = {v1}
(resp. F2 = {v3, v5}).

Weak SPEs outcomes: The play v0v4v
ω
6 is not the outcome of a weak

SPE in (G, v0). Indeed, this play is not λ∗-consistent since Buchi2(v0v4v
ω
6 ) =

0 < 1 = λ∗(v0). On the contrary, the play v0v1v2v
ω
3 is λ∗-consistent and so

there exists a weak SPE σ in (G, v0) such that 〈σ〉v0 = v0v1v2v
ω
3 . Such a

memoryless weak SPE σ is depicted by the double arrows in Figure 7.2.
Notice that ρ is not the outcome of a Nash equilibrium: one can prove

thanks to Example 6.1.6 that ρ is not Val*-consistent.
Good symbolic witness: A finite good symbolic witness P is depicted
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in Table 7.1. Let us illustrate the property (7.5) of Definition 7.2.3 that the
plays in P have to satisfy. For example, let us consider ρ(0,v0) = v0v1v2v

ω
3 .

The successors of v0 are v1 and v4. Thus we have to check if Buchi(v0v1v2v3) ≥
Buchi(v0ρ

(2,v1)) = Buchi(v0v1v2v
ω
3 ) and Buchi(v0v1v2v

ω
3 ) ≥ Buchi(v0ρ

(2,v4)) =

Buchi(v0v4v
ω
5 ). Then we proceed as before from v1. The only successor of

v1 is v2, thus we only have to check if Buchi(v1v2v3) ≥ Buchi(v1ρ
(1,v2)) =

Buchi(v1v2v
ω
3 ). We proceed in that way for all vertices along ρ(0, v0) and for

all ρ(i,v) ∈ P.
Notice that the chosen lassoes in P are subgame outcomes of σ in the

subgames of (G, v0).

Table 7.1: An example of finite good symbolic witness

(i, v) (0, v0) (2, v1) (1, v2) (1, v1) (1, v3) (2, v3)

lasso v0v1v2v
ω
3 v1v2v

ω
3 v2v

ω
3 v1v2v

ω
3 vω3 vω3

gain profile (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(i, v) (2, v4) (2, v5) (2, v6) (1, v5) (1, v6)

lasso v4v
ω
5 vω5 vω6 vω5 vω6

gain profile (0, 1) (0, 1) (0, 0) (0, 1) (0, 0)

7.4.2 Safety and qualitative Reachability games

Let G = (A,Gain, (Fi)i∈Π) be either a qualitative Reachability game or a Safety
game and let X = (X,GainX , (FXi )i∈Π)) be its extended game. Since Safe and
qR are not necessarily strongly prefix-linear in A, we cannot apply the weak
SPE outcome characterization on G. Nevertheless, we have proved that SafeX

and qRX become prefix-independent in X (Proposition 4.2.7), thus we define
the labeling functions λk on the extended game.

Let us first fix a local strongly prefix-linear constants set. For all i ∈ Π and
for all ((v, I), (v′, I ′)) ∈ EX , we fix:

αi((v, I), (v′, I ′)) = 0

βi((v, I), (v′, I ′)) = 1

.
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The obtained local strongly prefix-linear constants set CG is good. Indeed,
let i ∈ Π, let ((v, I), (v′, I ′)) ∈ EX and let ρ ∈ PlaysX(v′, I ′), we have that:

GainXi ((v, I)ρ) = GainXi (ρ) (GainXi is prefix-independent in X)

= αi((v, I), (v′, I ′)) + βi((v, I), (v′, I ′)) ·GainXi (ρ)

Additionally, we know that for all i ∈ Π and for all ρ ∈ Plays: GainXi (ρ) ≥
0. In this way, we obtain the following definition of the λk labeling functions.

Definition of λk for Safety or qualitative Reachability games

Definition 7.4.5. Given G = (A,Gain) a multiplayer Safety or qualita-
tive Reachability game. Let X = (X,GainX) be its associated extended
game. The labeling functions λk : V X → {0, 1} for k ∈ N are defined by
induction on k.
Let x ∈ V X , if x ∈ V X

i for some i ∈ Π:

• λ0(x) = 0

• λk+1(x) = max
x′∈Succ(x)

min{GainXi (ρ) | ρ ∈ Λk(x′)}.

In order to use the weak SPE outcome characterizations based on this
sequence of labeling functions, it remains to prove that (λk)k∈N (i) reaches a
fixpoint k∗ ∈ N and (ii) satisfies the existence of minima property. Since, the
image of GainXi is {0, 1}, (ii) is obviously satisfied. It remains to prove that
(λk)k∈N reaches a fixpoint. The same argument as for Lemma 7.4.2 holds.

Lemma 7.4.6. There exists k∗ ∈ N such that for all m ∈ N and for all
v ∈ V X , λk∗(v) = λk

∗+m(v) and k∗ is at most equal to |V X | = |V | · 2|Π|.

Remark 7.4.7. Notice that we can also obtain all these results from the fact that
SafeX and qRX becomes prefix-independent in X and from the instantiation
to Boolean games with prefix-independent gain functions (Section 7.4.1).

We are now able to obtain a corollary of Theorem 7.3.1 in the particular
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case of multiplayer Safety and qualitative Reachability games.

Corollary 7.4.8 (of Theorem 7.3.1). Given (G, v0) = (A,Gain) an ini-
tialized multiplayer Safety or qualitative Reachability game. Let (X , x0) =

(X,GainX) be its associated extended game. Let (λk)k∈N the sequence of
labeling functions provided in Definition 7.4.5.
Given ρ∗ ∈ PlaysX(x0), the following assertions are equivalent:

1. There exists a weak SPE σ in (X , x0) such that 〈σ〉x0 = ρ∗;

2. ρ∗ is λ∗-consistent;

3. There exists a good symbolic witness P in (X , x0) such that the play
ρ(0,x0) = ρ∗ with ρ(0,x0) ∈ P.

7.4.3 Quantitative and weighted Reachability games

Since a multiplayer quantitative Reachability game is a particular case of
weighted Reachability game (for all i ∈ Π, for all (v, v′) ∈ E, wi(v, v′) = 1),
we only explain how to instantiate the definition of the labeling functions λk

to weighted Reachability games.
Let G = (A,WR, (Fi)i∈Π) be a weighted Reachability game and let X =

(X,WRX , (FXi )i∈Π) be its associated extended game. As for multiplayer Safety
games and qualitative Reachability games we cannot directly apply the weak
SPE outcome characterizations on G. But by Proposition 4.2.7, we know that
for all i ∈ Π, WRX

i is strongly prefix-linear in X. Therefore the labeling
functions λk are defined on the extended game.

As previously, we begin by fixing a local strongly prefix-linear constants
set. Let i ∈ Π, let ((v, I), (v′, I ′)) ∈ EX , we fix:

αi((v, I), (v′, I ′)) =

wXi ((v, I), (v′, I ′)) if i 6∈ I

0 otherwise

βi((v, I), (v′, I ′)) = 1

The obtained local strongly prefix-linear constants set CG is good. Indeed,
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let i ∈ Π, let ((v, I), (v′, I ′)) ∈ EX and let ρ ∈ PlaysX(v′, I ′), we have that:

• If i ∈ I, then i ∈ I ′ by I-monotonicity. It follows that WRX
i ((v, I)ρ) =

WRX
i (ρ) = 0.

Moreover, in this case αi((v, I), (v′, I ′)) = 0 and βi((v, I), (v′, I ′)) = 1,
thus we obtain WRX

i ((v, I)ρ) = αi((v, I), (v′, I ′)) + βi((v, I), (v′, I ′)) ·
WRX

i (ρ).

• If i 6∈ I, then αi((v, I), (v′, I ′)) = wXi ((v, I), (v′, I ′)) and βi((v, I), (v′, I ′)) =

1.
It follows that WRX

i ((v, I)ρ) = αi((v, I), (v′, I ′)) + αi((v, I), (v′, I ′)) ·
WRX

i (ρ).

Additionally, we know that for all i ∈ Π, for all (v, I) ∈ V X such that
i ∈ I, for all ρ ∈ Plays(v, I): WRi(ρ) = 0. In this way, we obtain the following
definition of the λk labeling functions.

Definition of λk for quantitative and weighted Reachability games

Definition 7.4.9. Given G = (A,WR, (Fi)i∈Π) a weighted reachability
game. Let X = (X,WRX , (FXi )i∈Π) be its associated extended game.
The labeling functions λk : V X → N ∪ {+∞} for k ∈ N are defined by
induction on k.
Let x ∈ V X , if x ∈ V X

i for some i ∈ Π:

• λ0(x) =

0 if i ∈ I(x)

+∞ otherwise
.

• λk+1(x) =


0 if i ∈ I(x)

min
x′∈Succ(x)

{
wXi (x, x′)+

sup{WRX
i (ρ) | ρ ∈ Λk(x′)}

} otherwise
.

We now prove that (λk)k∈N reaches a fixpoint k∗ ∈ N.
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Proposition 7.4.10. There exists k∗ ∈ N such that for all m ∈ N and for
all v ∈ V X :

λk
∗
(v) = λk

∗+m(v).

Proof. For all v ∈ V X , the sequences (λk(v))k∈N are non-increasing
(Lemma 7.1.9) and the component-wise ordering is a well quasi-ordering on
(N ∪ {+∞})|V X | thus there exists k ∈ N such that for all v ∈ V X and for all
m ∈ N: λk(v) = λk+m(v).

We now need to establish an important property satisfied by the sets Λk(v):
when for some player i, the costs WRX

i (ρ) associated with the plays ρ in Λk(v)

are unbounded, there actually exists some play in this set that has an infinite
cost. In other terms, either Λk(v) contains at least one play ρ with an infinite
cost WRX

i (ρ) or there exists a constant c ∈ N such that WRX
i (ρ) ≤ c for all

ρ ∈ Λk(v).

Proposition 7.4.11. For every k ∈ N, for every v ∈ V X and for every
i ∈ Π, the following implication holds: if sup{WRX

i (ρ) | ρ ∈ Λk(v)} = +∞,
then there exists a play ρ ∈ Λk(v) such that WRX

i (ρ) = +∞.

Proof. Let k ∈ N, let v ∈ V X and let i ∈ Π. Let us assume that
sup{WRX

i (ρ) | ρ ∈ Λk(v)} = +∞. It follows that for all n ∈ N, there
exists ρn ∈ Λk(v) such that WRX

i (ρn) > n.
In particular, (ρn)n∈N is a sequence of plays in Plays(v). Since V ω is a
compact set and Plays(v) is a closed set in V ω, Plays(v) is compact. It
follows that there exists a subsequence (ρn`)`∈N of (ρn)n∈N and ρ ∈ Plays(v)

such that:
ρ = lim

`→+∞
ρn` .

As WRX
i is a continuous function, we obtain that WRX

i (ρ) = +∞. In order
to conclude the proof, we show that ρ ∈ Λk(v).
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Let us assume that ρ 6∈ Λk(v): there exist j ∈ Π, t ∈ N such that ρt ∈ Vj
and WRX

j (ρ≥t) > λk(ρt). In particular, it implies that λk(ρt) < +∞.

Let h = ρ0 . . . ρt . . . ρt+λk(ρt) be a prefix of ρ.

Since ρ = lim`→+∞ ρ
n` , we can choose n` large anough that ρn` and ρ share

h as a common prefix. We have to consider two cases:

• If there exists t′ ∈ N such that t ≤ t′ ≤ t+λk(ρt) and j ∈ I(ρt′) (Player j
visits FXj along ρt . . . ρt+λk(ρt)), then WRX

j (ρ≥t) = WRX
j (ρn`≥t) and

WRX
j (ρn`≥t) > λk(ρt) = λk(ρn`t ). It is a contradiction with ρn` ∈ Λk(v).

• Otherwise: WRX
j (ρn`k ) > |ρt . . . ρt+λk(ρt)| = λk(ρt) = λk(ρn`t ) (because

wXj (e) ≥ 1 for all e ∈ EX). It follows that ρn` 6∈ Λk(v), that is
contradiction.

The next corollary is a direct consequence of Proposition 7.4.11.

Corollary 7.4.12. For every k ∈ N, for every v ∈ V X and for every i ∈ Π:

sup{WRX
i (ρ) | ρ ∈ Λk(v)} = max{WRX

i (ρ) | ρ ∈ Λk(v)}.

We are now able to obtain a corollary of Theorem 7.3.1 in the particular
case of multiplayer quantitative and weighted Reachability games.

Corollary 7.4.13 (of Theorem 7.3.1). Given (G, v0) = (A,WR, (Fi)i∈Π)

an initialized multiplayer quantitative or weighted Reachability game. Let
(X , x0) = (X,WRX , (FXi )i∈Π) be its associated extended game. Let (λk)k∈N

the sequence of labeling functions provided in Definition 7.4.9.
Given ρ∗ ∈ PlaysX(x0), the following assertions are equivalent:

1. There exists a weak SPE σ in (X , x0) such that 〈σ〉x0 = ρ∗;

2. ρ∗ is λ∗-consistent;

3. There exists a good symbolic witness P in (X , x0) such that the play
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ρ(0,x0) = ρ∗ with ρ(0,x0) ∈ P.

We conclude this section by providing an example of the computation of
(λk)k∈N and of utilization of Corollary 7.4.13.

Example 7.4.14. We come back to Example 4.1.3. Let us recall it is a multi-
player quantitative reachability game G = (A, (QR1,QR2), (F1, F2)) with two
players. The game arena is depicted in Figure 4.1, the round vertices are
owned by Player 1 whereas the square vertices are owned by Player 2. The
target sets of the players are respectively equal to F1 = {v2} (grey vertex),
F2 = {v2, v5} (double circled vertices). Its associated extented game is pro-
vided in Figure 4.3. In Figure 7.3, we provie this extended game enhanced
with the value of λ∗, in bold, near the corresponding vertex.

v0, ∅
4

v1, ∅
3

v6, ∅
2

v7, ∅
1

v3, ∅ +∞

v4, ∅
+∞

v5, {2}
+∞

v4, {2}
+∞

v0, {2}
0

v1, {2}
3

v6, {2}
2

v7, {2}
1

v3, {2}
+∞

v2, {1, 2}
0

v0, {1, 2}
0

v1, {1, 2}
0

v6, {1, 2}
0

v7, {1, 2}
0

v3, {1, 2}
0

v4, {1, 2}
0

v5, {1, 2}
0

Figure 7.3

Computation of λ∗: The different computation steps of λ∗ are summa-
rized in Table 7.2. The columns indicate the vertices according to their related
set I of players that have already visited their target set, respectively Π, {2},
and ∅. Notice that for I = Π, we only write one column v as for all vertices
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(v,Π) the value of λ is equal to 0 all along the procedure.

For all v ∈ V X , λ0(v) = 0 by definition.
Let us first consider the vertices v ∈ V X with I(v) = Π. Since all v′ ∈

Succ(v) are such that I(v′) = I, we obtain that λk(v) = 0 for all k ∈ N and in
particular λ∗(v) = 0.

Let us now explain how to compute λ1 from λ0 for the other vertices. For
v = (v7, {2}), we have that λ1(v) = 1 + min

(v,v′)∈EX
sup{QRX

1 (ρ) | ρ ∈ Λ0(v′)}.

As the unique successor of v is (v2, {1, 2}) and all λ0-consistent plays be-
ginning in this successor have cost 0 for Player 1, we have that λ1(v) = 1.
For the computation of λ1(v6, {2}), the same argument holds since (v6, {2})
has the unique successor (v7, {2}). The vertex (v1, {2}) has two successors:
(v6, {2}) and (v3, {2}). Again, we know that all λ0-consistent plays begin-
ning in (v6, {2}) have cost 2 for Player 1. From (v3, {2}) however, the play
(v3, {2})(v0, {2})((v4, {2}))ω is λ0-consistent and has cost +∞ for Player 1.
Thus, we obtain that λ1(v1, {2}) = 3. For the other vertices v ∈ V X with
I(v) = {2}, one can see that λ1(v) = λ0(v). The same arguments hold for
vertices v ∈ V X such that I(v) = ∅.

Now we compute λ2 from λ1. For all vertices (v, I) ∈ V X such that I = {2}
those values does not evolve anymore. But for (v, I) = (v0, ∅), λ2(v0, ∅) be-
comes 4. Indeed, this vertex has two successors: (v4, ∅) with the play ((v4, ∅))ω

which is λ1-consistent and (v1, ∅) such that the only λ1-consistent plays from
this vertex are those with prefix (v1, ∅)(v6, ∅)(v7, ∅)(v2, {2}). It follows that
1 + min

v′∈Succ(v0,∅)
sup{QRX

i (ρ) | ρ ∈ Λ1(v′)} = 4.

Finally, one can see that λ3 = λ2 and thus (λk)k∈N has reached a fixpoint
with k∗ = 2.

Weak SPEs outcomes: The play ((v0, ∅)(v4, ∅))ω is not λ∗-consistent,
thus ((v0, ∅)(v4, ∅))ω is not the outcome of a weak SPE in (X , x0). It follows
that (v0v4)ω is not the outcome of a weak SPE in (G, v0). Notice that we have
proved in Example 6.2.5 that it is the outcome of Nash equilibrium.

On the contrary, the play

ρ = (v0, ∅)(v1, ∅)(v6, ∅)(v7, ∅)
(
(v2,Π)(v0,Π)(v1,Π)(v6,Π)(v7,Π)

)ω
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is λ∗-consistent. In particular ρ is the outcome of a weak SPE in (X , x0). For
example, the memoryless strategy profile (σ1, σ2) depicted by double arrows in
Figure 7.3 is a weak SPE in (X , x0) with outcome ρ. It follows that the corre-
sponding strategy profile σ′ in (G, v0) is a weak SPE in (G, v0) with outcome
(v0v1v6v7v2)ω.

I {1, 2} {2} ∅
v v0 v1 v6 v7 v3 v4 v5 v0 v1 v6 v7 v3 v4

λ0 0 0 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
λ1 0 0 3 2 1 +∞ +∞ +∞ +∞ 3 2 1 +∞ +∞
λ2 = λ∗ 0 0 3 2 1 +∞ +∞ +∞ 4 3 2 1 +∞ +∞

Table 7.2: The different steps of the computation of λ∗ for the extended game
of Figure 7.3

7.4.4 λ-consistency vs Visitλ-consistency in Reachability games

In this section, we prove that given a multiplayer Reachability game G =

(A,Reach, (Fi)i∈Π), its associated extended game and a labeling function λk as
defined in Definition 7.4.5 or Definition 7.4.9: for all play in the extended game,
the play is λk-consistent if and only if it is Visitλk-consistent (Definition 6.2.2).

Proposition 7.4.15. Let G = (A,Reach, (Fi)i∈Π) be a multiplayer Reach-
ability game and let X = (X,ReachX , (FXi )i∈Π) be its associated extended
game. Given a play ρ ∈ PlaysX and a labeling function λk as defined in
Definition 7.4.5 or Definition 7.4.9:

ρ is λk-consistent if and only if ρ is Visitλk-consistent.

Proof. Let ρ ∈ PlaysX and a labeling function λk as defined in Defini-
tion 7.4.5 if ReachX = qRX or as in Definition 7.4.9 if ReachX = QRX

or WRX .

• If ReachX = qRX :

(⇐) Let us assume that for all i ∈ Π and for all n ∈ N, we have
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that (i 6∈ Visit(ρ0 . . . ρn) ∧ ρn ∈ V X
i ⇒ qRX

i (ρ≥n) ≥ λk(ρn)).
Let i ∈ Π and k ∈ N such that ρk ∈ V X

i , we have to prove
that qRX

i (ρ≥k) ≥ λk(ρk). If i 6∈ Visit(ρ0 . . . ρk), it is true by
Visitλk-consistency. Otherwise, it means that i ∈ I(ρk) and thus
qRi(ρ≥k) = 1 and λk(ρk) = 1.

(⇒) Follows directly from the definitons of λk-consistency and Visitλk-
consistency.

• If ReachX = QRX or WRX :

(⇐) Let us assume that for all i ∈ Π and for all n ∈ N, we have
that (i 6∈ Visit(ρ0 . . . ρn) ∧ ρn ∈ V X

i ⇒ WRX
i (ρ≥n) ≤ λk(ρn)).

Let i ∈ Π and k ∈ N such that ρk ∈ V X
i , we have to prove

that WRX
i (ρ≥k) ≤ λk(ρk). If i 6∈ Visit(ρ0 . . . ρk), it is true by

Visitλk-consistency. Otherwise, it means that i ∈ I(ρk) and thus
WRi(ρ≥k) = 0 and λk(ρk) = 0.

(⇒) Follows directly from the definitons of λk-consistency and Visitλk-
consistency.

7.5 SPE outcome characterization

From the characterizations provided in the previous sections (Theorem 7.3.1),
we are able to obtain the same characterizations for SPEs by adding an hy-
pothesis on the cost functions of the game: the cost functions have to be
continuous. Indeed, with this additional hypothesis the notions of weak SPE
and SPE are equivalent (Proposition 2.4.22).

Theorem 7.5.1 (SPE outcome characterizations). Let (G, v0) = (A,Cost)

be an initialized multiplayer game and let (λk)k∈N be a sequence of labeling
functions as defined in Definition 7.1.5 such that:

(H1) For all i ∈ Π, Costi is strongly prefix-linear in A and continuous;

(H2) (λk)k∈N satisfies the existence of maxima property;
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(H3) (λk)k∈N reaches a fixpoint and its fixpoint is k∗ ∈ N.

Then, given ρ∗ ∈ Plays(v0), the following assertions are equivalent:

1. There exists an SPE σ in (G, v0) such that 〈σ〉v0 = ρ∗;

2. ρ∗ ∈ Λ∗(v0) and for all v ∈ Succ∗(v0), Λ∗(v) 6= ∅;

3. There exists a good symbolic witness P such that the play ρ(0,v0) = ρ∗

with ρ(0,v0) ∈ P.

In particular this result may be applied to quantitative and weighted Reach-
ability games.

Corollary 7.5.2 (of Theorem 7.5.1). Given (G, v0) = (A,WR, (Fi)i∈Π)

an initialized multiplayer quantitative or weighted Reachability game. Let
(X , x0) = (X,WRX , (FXi )i∈Π) be its associated extended game. Let (λk)k∈N

the sequence of labeling functions provided in Definition 7.4.9.
Given ρ∗ ∈ PlaysX(x0), the following assertions are equivalent:

1. There exists an SPE σ in (X , x0) such that 〈σ〉x0 = ρ∗;

2. ρ∗ is λ∗-consistent;

3. There exists a good symbolic witness P in (X , x0) such that the play
ρ(0,x0) = ρ∗ with ρ(0,x0) ∈ P.

Since, we can also prove that in multiplayer qualitative Reachability games,
the concepts of weak SPE and SPE are equivalent, in the same way we also
obtained SPE outcome characterizations for qualitative Reachability games.

Corollary 7.5.3 (of Theorem 7.3.1). Given (G, v0) = (A, qR, (Fi)i∈Π)

an initialized multiplayer qualitative Reachability game. Let (X , x0) =

(X, qRX , (FXi )i∈Π) be its associated extended game. Let (λk)k∈N the sequence
of labeling functions provided in Definition 7.4.5.
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Given ρ∗ ∈ PlaysX(x0), the following assertions are equivalent:

1. There exists an SPE σ in (X , x0) such that 〈σ〉x0 = ρ∗;

2. ρ∗ is λ∗-consistent;

3. There exists a good symbolic witness P in (X , x0) such that the play
ρ(0,x0) = ρ∗ with ρ(0,x0) ∈ P.

Proposition 7.5.4. Let (G, v0) = (A, qR, (Fi)i∈Π) be an initialized multi-
player qualitative Reachability game and let σ be a strategy profile in (G, v0).
Then σ is an SPE in (G, v0) if and only if σ is a weak SPE in (G, v0).

Proof. Let (G, v0) = (A, qR, (Fi)i∈Π) be an initialized multiplayer qualitative
Reachability game and let σ be a strategy profile in (G, v0).
(⇒) This implication is a consequence of the definitions of SPE and weak
SPE.
(⇐) Let σ be a weak SPE in (G, v0). Assume that σ is not an SPE, i.e.,
there exists hv ∈ Hist(v0) such that σ�h is not an NE in (G�h, v). Then some
player i has a profitable deviation σ′i in the subgame (G�h, v). As qRi takes
its values in {0, 1}, this means that

0 = qRi(hρ) < qRi(hρ
′) = 1

with ρ = 〈σ�h〉v and ρ′ = 〈σ′i, σ−i�h〉v. We consider the first occurrence of a
vertex of Fi along hρ′ (which appears in ρ′ and not in h as qRi(hρ) = 0): let
g′ of mininal length such that hg′ < hρ′ and g′ ends in some v′ ∈ Fi. Let
us define a strategy τi that is finitely deviating from σi�h and profitable for
Player i in (G�h, v). This will be in contradiction with our hypothesis. For
all g ∈ Histi(v), let

τi(g) =

σ′i(g) if g ≤ g′

σi�h(g) otherwise
.



146 Chapter 7 – Weak SPE and SPE Outcome Characterizations

By definition of τi, we have that qRi(h〈τi, σ−i�h〉v) = qRi(hρ
′) = 1 and τi is

finitely deviating from σi�h since |g′| is finite.
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CHAPTER 8

INTRODUCTION

Motivations In order to introduce this part and our motivations, we come
back to an example that we have already discussed (Example 6.2.5). Let us
first recall this example.

It is a multiplayer quantitative Reachability game G =

(A, (QR1,QR2), (F1, F2)) with two players. The game arena is depicted again
in Figure 8.1, the round vertices are owned by Player 1 whereas the square
vertices are owned by Player 2. The target sets of the players are respectively
equal to F1 = {v2} (grey vertex), F2 = {v2, v5} (double circled vertices).

v5 v4 v0 v1 v6 v7

v2

v3

Figure 8.1: The multiplayer quantitative Reachability game of Example 4.1.3
and Example 6.2.5

In Example 6.2.5, we have proved that the plays ρ = (v0v4)ω and ρ′ =

v0v1v6v7v2(v0v4)ω are both outcomes of Nash equilibria. That means that
in the same initialized game different Nash equilibria coexist. Moreover, we
recall that QR(ρ) = (+∞,+∞) and no player reaches his target set while
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QR(ρ′) = (4, 4) and both players reach their target set.

In view of that, synthesizing a Nash equilibrium with outcome ρ′ instead of
ρ seems more relevant. Obviously, this phenomenon of coexistience of equilib-
ria in the same game does not only occur with Nash equilibria in Reachability
game. A natural question which can arise is thus “What is a relevant equilib-
rium in a given game?”, for some notion of equilibrium (NE, SPE or weak SPE)
and in some kind of games (multiplayer Boolean games, multiplayer Reachabil-
ity games,. . .). We are also interested in answering this other question “Given
a notion of relevant equilibrium, what is the complexity of deciding if such a
relevant equilibrium exists in a given game?”.

Constrained existence problem One way to obtain a relevant equilibrium
is to minimize (resp. maximize) the cost (resp. the gain) of each player. The
constrained existence problem (CEP) is the decision problem associated with
this optimization problem.

Even if we could give a general definition of this problem, we choose to
provide a definition for multiplayer Boolean games and another for multiplayer
games with cost functions1.

Problem 1 ((Boolean) Constrained existence problem). Let (G, v0) =

(A,Gain) be a multiplayer Boolean game, let x, y ∈ {0, 1}|Π| be two thresh-
olds, decide whether there exists an equilibriuma σ in (G, v0) such that
x ≤ Gain(〈σ〉v0) ≤ y.

aIn this document, an equilibrium is either an NE, an SPE or a weak SPE.

Notice that with Problem 1, if for some player i ∈ Π, xi = 1 then, it implies
that Player i has to win along the outcome of the equilibrium. On the contrary,
if for some player i ∈ Π, yi = 0 then, it implies that Player i has to loose along
the outcome of the equilibrium.

1Once again, the counterpart for multiplayer games with gain functions may be easily
obtained from the one for games with cost functions.
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Problem 2 ((Quantitative) Constrained existence problem). Let (G, v0) =

(A,Cost) be a multiplayer game, let x, y ∈ (R ∪ {−∞,+∞})|Π| be two
thresholds, decide whether there exists an equilibrium σ in (G, v0) such that
x ≤ Costi(〈σ〉v0) ≤ y.

Organization of the part In Chapter 9, we consider multiplayer Boolean
games with prefix-independent gain functions and solve the constrained exis-
tence problem of weak SPEs in co-Büchi, Parity, Muller, Rabin, Streett, Büchi
and Explicit Muller games. In Chapter 10, we study the constrained existence
problem of weak SPEs and SPEs in qualitative Reachability games and Safety
games. In Chapter 11, we prove that the constrained existence problem of weak
SPEs (and SPEs) in quantitative Reachability games is PSPACE-complete. Fi-
nally, in Chapter 12, we focus on quantitative Reachability games and consider
variants of the constrained existence problem in this particular setting.





CHAPTER 9

BOOLEAN GAMES WITH PREFIX-INDEPENDENT
GAIN FUNCTIONS

In this chapter, based on [BBGR18, Goe20], we study the complexity classes of
the constrained existence problem of weak SPEs in multiplayer Boolean games
with classical prefix-independent gain functions. Our results are summarized
in Table 9.1.

Table 9.1: Complexity classes of the constrained existence problem of weak
SPEs for classical prefix-independent qualitative objectives

Expl. Muller Büchi Co-Büchi Parity Muller Rabin Streett

P-complete × ×
NP-complete × × × × ×

Those results rely on the weak SPE outcome characterizations (Corol-
lary 7.4.3) provided in Section 7.4.1 and based on the labeling functions (λk)k∈N

defined in Definition 7.4.1. Therefore, in this chapter, when we refer to a la-
beling function λk this is the function defined in Definition 7.4.1.

In Section 9.1, we provide a naive algorithm to decide the constrained
existence problem of weak SPEs in multiplayer Boolean games with prefix-
independent gain functions. This algorithm is based on a reformulation of
the notion of λ-consistency in the particular setting of Boolean games with
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prefix-independent gain functions.
In Section 9.2, we prove that the CEP of weak SPEs in mutliplayer Boolean

games with co-Büchi, Parity, Muller, Rabin, and Streett objectives is NP-
complete. The NP-membership is based on the notion of finite good symbolic
witness (see Corollary 7.4.3).

In Section 9.3, the P-completeness of the CEP of weak SPEs in multi-
player Büchi games is proved. The P-membership relies on the reformulation
of λ-consistency provided in Section 9.1 and on an algorithm already used by
Ummels [Umm08] to prove that the CEP of NEs in multiplayer Büchi games
belongs to P.

Finally, in Section 9.4, the naive algorithm explained in Section 9.1 allows
to obtain the P-membership of the CEP of weak SPEs in multiplayer Explicit
Muller games.

9.1 Computation of λ∗

9.1.1 Reformulation of λk-Consistency

In the context of multiplayer Boolean games with prefix-independent gain
functions, by defining for all i ∈ Π and for all k ∈ N the set of vertices
W k
i = {v ∈ Vi | λk(v) = 1}, one can rephrase the λk-consistency in the

following way.

Lemma 9.1.1. Let (G, v0) = (A,Gain) be a multiplayer Boolean game with
prefix-independent gain functions in A.
Let ρ ∈ Plays be a play and k ∈ N, ρ |= λk if and only if for each i ∈ Π,
(Gaini(ρ) = 0 =⇒ ∀n ∈ N such that ρn ∈ Vi, ρn 6∈W k

i ).

The idea is that a play ρ is λk−consistent if and only if for each player i ∈ Π

either this play has gain 1 for Player i (i.e., Player i achieves his objective along
ρ) or ρ does not cross the set W k

i .

Proof. Let (G, v0) = (A,Gain) be a multiplayer Boolean game with prefix-
independent gain functions.
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Let ρ ∈ Plays be a play and k ∈ N.
( =⇒ ) Let us assume that ρ |= λk.
Let i ∈ Π, we assume that Gaini(ρ) = 0. We have to prove that for all n ∈ N
such that ρn ∈ Vi , ρn 6∈W k

i .
Let us assume by contradiction that there exists n ∈ N such that ρn ∈ Vi
and ρn ∈W k

i .
By definition of W k

i , it follows that λ
k(ρn) = 1. Additionally, we have:

Gaini(ρ) = Gaini(ρ≥n) (Gaini is prefix-independent)

≥ λk(ρn) ρ |= λk

= 1

That is a contradiction with the assumption that Gaini(ρ) = 0.

(⇐= ) Let us assume that for each i ∈ Π, Gaini(ρ) = 0 =⇒ ∀n ∈
N such that ρn ∈ Vi, ρn 6∈W k

i .
We have to prove that ρ is λk-consistent.
Let i ∈ Π and let n ∈ N such that ρn ∈ Vi. If Gaini(ρ) = 1, then
Gaini(ρ≥n) = 1 because Gaini is prefix-independent. Thus Gaini(ρ≥n) ≥
λk(ρn) whatever the value of λk(ρn). If Gaini(ρ) = 0, then it implies by
hypothesis that ρn 6∈ W k

i . It follows that λk(ρn) = 0 and Gaini(ρ≥n) = 0 ≥
λk(ρn) by prefix-independency of Gaini. That concludes the proof.

For all k ∈ N, we write W k to depict {W k
i | i ∈ Π}. Notice that one can

recover λk from W
k and vice versa.

9.1.2 Algorithms

In view of the reformulation of λk-consistency (Lemma 9.1.1), given (i) a gain
profile p ∈ {0, 1}|Π|, (ii) W k for some k ∈ N and (iii) a vertex v ∈ V , we are
able to provide an algorithm that decides if there exists a play ρ ∈ Plays(v)

such that ρ is λ∗-consistent with Gain(ρ) = p.
The main idea is the following: for each player i such that pi = 1, there

is nothing to check since Player i wins; on the contrary for each player i such
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that pi = 0 the play ρ cannot cross W k
i otherwise ρ is not λk-consistent. Thus,

for all players i ∈ Π such that pi = 0, all vertices W k
i are removed from the

arena A. Then we check if there exists a play with gain profile p in this new
arena.

With this algorithm we consider a sub-arena of the arena A. Given V ′ ⊆ V ,
the associated sub-arena of A, denoted by A�V ′ is given by A�V ′ =

(Π, V ′, E′, (V ′i )i∈Π) where (i) E′ = {(v, v′) ∈ E | v, v′ ∈ V ′} and (ii) for
each i ∈ Π, V ′i = Vi ∩ V ′.

Let us assume that the algorithm ExistsPlay(A, p, v) returns true if there
exists a play beginning in v with gain profile p in A; false otherwise (see
Lemma 2.2.22). We obtain, the algorithm ExistenceOfLambdaConsis-
tentPlay(G,W k

, p, v) (see Algorithm 1) which returns true if there exists a
play ρ ∈ Plays(v) such that ρ |= λk and Gain(ρ) = p; false otherwise.

Algorithm 1: ExistenceOfLambdaConsistentPlay(G,W k
, p, v)

1 V ′ = V \
⋃

i∈Π|pi=0

W k
i ;

2 A′ = A�V ′ ;
3 return ExistsPlay(A′, p, v)

Lemma 9.1.2 (Correctness and complexity of the algorithm Existence-
OfLambdaConsistentPlay). Given a multiplayer Boolean game G with
prefix-independent gain functions, a gain profile p ∈ {0, 1}|Π|, W k the values
of λk and a vertex v ∈ V :

• ExistenceOfLambdaConsistentPlay(G,W k
, p, v) returns true if

and only if there exists a play ρ ∈ Plays(v) such that ρ |= λk and
Gain(ρ) = p.

• This algorithm has a time complexity polynomial in the size of G and
in path where path is the complexity of the algorithm ExistsPlay.
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Proof. Let G be a multiplayer Boolean game with prefix-independent gain
functions, p ∈ {0, 1}|Π|, W k and v ∈ V :

We define A′ = A�V ′ with V ′ = V \
⋃

i∈Π|pi=0

W k
i .

(⇒) : Let us assume that the algorithm ExistenceOfLambdaConsis-
tentPlay(G,W k

, p, v) returns true. That means that there exists ρ ∈
PlaysA′(v) such that Gain(ρ) = p. We now prove that ρ |= λk. In order
to do so, we use Lemma 9.1.1. Thus we have to prove that for all i ∈ Π,
(Gaini(ρ) = 0 =⇒ ∀n ∈ N st. ρn ∈ Vi, ρn 6∈W k

i ).
Let i ∈ Π. Let us assume that Gaini(ρ) = 0. Let n ∈ N such that ρn ∈ Vi,
ρn 6∈W k

i since W k
i has been removed from A.

(⇐) : Let us now assume that there exists ρ ∈ Plays(v) such that Gain(ρ) = p

and ρ |= λk. We prove that ρ ∈ PlaysA′(v).
Otherwise that there exists n ∈ N such that ρn 6∈ V ′. It follows that, by
assuming ρn ∈ Vi for some i ∈ Π, pi = 0 and λk(ρn) = 1. By prefix-
independence of Gaini, we have that Gaini(ρ≥n) = 0 and thus Gaini(ρ≥n) <

λk(ρn). That is a contradiction with ρ |= λk.

Now that we have this algorithm at our disposal, we can easily provide an
algorithm that computes W k+1 from W

k for some k ∈ N.
By assuming that we have W k as an input, we thus have for all v ∈ V the

value λk(v). In order to compute λk+1(v) we have to compute

max
v′∈Succ(v)

min{Gaini(ρ) | ρ ∈ Λk(v′)}

(if v ∈ Vi for some i ∈ Π). Since we are considering a Boolean game, this
maximum is equal to 1 if and only if there exists a vertex v′ ∈ V such that
min{Gaini(ρ) | ρ ∈ Λk(v′)} = 1 and this minimum is equal to 1 if and only if
for all ρ ∈ Λk(v′), Gaini(ρ) = 1. In other words, this minimum is equal to 0 if
and only if there exists a play ρ ∈ Λk(v′) such that Gaini(ρ) = 0. In particular,
if we check for all gain profil p ∈ {0, 1}|Π| such that pi = 0, if there exists a
λk-consistent play beginning in v′ and with gain profile p, we can decide if this
minimum is equal to 0.
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From these observations follows the NextStepLabelingFunctions al-
gorithm (Algorithm 2). In this algorithm, the set P(v) depicts the set of all
possible gain profiles from v. That is P(v) = {Gain(ρ) | ρ ∈ Plays(v)}. The
complexity of the NextStepLabelingFunctions relies on the cardinality
of this set. Its maximal cardinality is denoted by m: m = maxv∈V |P(v)|. It
follows that the running time of this algorithm is polynomial in the size of G,
in path and in m.

Algorithm 2: NextStepLabelingFunctions(G,W k
)

1 foreach i ∈ Π do
2 W k+1

i = ∅
3 foreach v ∈ V do
4 Max 1 = False ;
5 foreach v′ ∈ Succ(v) do
6 Min 0 = False;
7 foreach p ∈ P(v′) such that pi = 0 for i ∈ Π such that v ∈ Vi do
8 res =

ExistenceOfLambdaConsistentPlay(G,W k
, p, v′);

9 if res is true then
10 Min 0 = True
11 if Min 0 is False then
12 Max 1 = True
13 if Max 1 is True then
14 Add v to W k+1

i for i ∈ Π such that v ∈ Vi
15 return W

k+1

Lemma 9.1.3. Given a multiplayer Boolean game G with prefix-independent
gain functions and W k for some k ∈ N. The set W k+1 can be computed in
time complexity polynomial in the size of G, path and m.

Lemma 7.4.2 states that the fixpoint of (λk)k∈N is reached in at most |V |
steps. It follows that W ∗ = W

k∗ can also be computed thanks to an algorithm
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that runs in time complexity which is polynomial in the size of G, path and m.

Proposition 9.1.4. Given a multiplayer Boolean game G with prefix-
independent gain functions, the set W ∗ can be computed in time complexity
which is polynomial in the size of G, path and m.

Proof. We begin with W 0 which is easily built since for all v ∈ V , λ0(v) = 0.
Thus, for all i ∈ Π, W 0

i = ∅. Then we apply the NextStepLabeling-
Functions algorithm atmost |V | times (Lemma 7.4.2) to obain W

∗. The
resulting time complexity of this procedure is thus also polynomial in the
size of G, path and m.

Given two thresholds x, y ∈ {0, 1}|Π|, a naive approach to decide the con-
strained existence problem would be to (i) compute W ∗ (Proposition 9.1.4)
and (ii) for each gain profile p ∈ {0, 1}|Π| such that x ≤ p ≤ y check if there
exists a λ∗-consistent play beginning in v0 and with gain profile equal to p
(Lemma 9.1.2).

Proposition 9.1.5. The constrained existence problem of weak SPEs in
Boolean games with prefix-independent gain functions can be decided thanks
to an algorithm which has a time complexity that is polynomial in the size of
G, path and m.

Remark 9.1.6. Notice that to decide the constrained existence problem of weak
SPEs in Boolean games with prefix-independent gain functions, sincem ≤ 2|Π|,
Proposition 9.1.5 implies a time complexity at least exponential, if no smaller
upper bound on m is known.
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9.2 NP-Completeness for Multiplayer co-Büchi, Par-
ity, Muller, Rabin, and Streett Games

In this section we prove that the constrained existence problem of weak SPEs
in multiplayer Boolean games with with co-Büchi, Parity, Muller, Rabin, and
Streett objectives is NP-complete.

Theorem 9.2.1. The constrained existence problem of weak SPEs in mul-
tiplayer Boolean games with co-Büchi, Parity, Muller, Rabin, and Streett
objectives is NP-complete.

Before proving this result, one need to prove that there exists a weak SPE
in (G, v0) with some gain profile p if and only if there exists a finite good
symbolic witness P such that ρ(0,v0) has a gain profile equal to p. This will
implies, thanks to Proposition 7.2.6, that there exists a finite-memory weak
SPE in (G, v0) with the same gain profile.

Proposition 9.2.2. Let (G, v0) = (A,Gain) be a multiplayer Boolean game
with Büchi, co-Büchi, Parity, Muller, Explicit Muller, Rabin or Streett ob-
jectives. Given a gain profile p ∈ {0, 1}|Π|, the following assertions are equiv-
alent:

1. There exists a weak SPE σ in (G, v0) such that Gain(〈σ〉v0) = p;

2. There exists a finite good symbolic witness P such that:

• Gain(ρ(0,v0)) = p;

• For all ρ(i,v) ∈ P, there exist h ∈ Hist(v) and ` ∈ Hist such that
h` ∈ Hist(v), |h`| ≤ 2 · |V |2 and ρ(i,v) = h`ω.

3. There exists a finite-memory weak SPE τ in (G, v0) with memory size
in O(|Π| · |V |3) and Gain(〈τ〉v0) = p.
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Proof. Let (G, v0) = (A,Gain) be a multiplayer Boolean game with Büchi,
co-Büchi, Parity, Muller, Explicit Muller, Rabin or Streett objectives and a
gain profile p ∈ {0, 1}|Π|.
We successively prove 1 =⇒ 2, 2 =⇒ 3 and 3 =⇒ 1.

(1 =⇒ 2) : Let us assume that there exists a weak SPE σ in (G, v0) such
that Gain(〈σ〉v0) = p. Since Gaini is prefix-independent for all i ∈ Π

and the labeling functions defined in Definition 7.4.1 for Boolean games
with prefix-independent objectives functions fulfill the hypotheses of Theo-
rem 7.3.1, we know that 〈σ〉v0 ∈ Λ∗(v0) and for all v ∈ Succ∗(v0), Λ∗(v) 6= ∅
(Lemma 7.3.2). Therefore we can use the same kind of construction as for
the proof of (2 =⇒ 3) to obtain a finite good symbolic witness.

In this proof for each ρ(i,v) we chose a play π ∈ Plays(v) such that
π ∈ Λ∗(v) and Gaini(π) = min{Gaini(ρ

′) | ρ′ ∈ Λ∗(v)}a We proceed
in the same way except that we impose that the play π is a lasso such
that there exist h ∈ Hist(v) and ` ∈ Hist such that |h`| ≤ 2·|V |2 and π = h`ω.

Let π ∈ Λ∗(v) such that Gaini(π) = min{Gaini(ρ
′) | ρ′ ∈ Λ∗(v)}, we claim

that there exists a play π′ that is a lasso such that there exist h ∈ Hist(v)

and ` ∈ Hist such that (i) |h`| ≤ 2 · |V |2, (ii) π′ = h`ω and (iii) π′ ∈ Λ∗(v).
Indeed it is proved in [BBMU15, Proposition 3.1] that given a play ρ,
one can construct a lasso ρ′ which respects (i) and (ii) and such that
First(ρ) = First(ρ′), Occ(ρ) = Occ(ρ′), and Inf(ρ) = Inf(ρ′) (this con-
struction eliminates some cycles of ρ in a clever way). We thus apply this
construction on π in order to obtain π′.
Since Inf(π) = Inf(π′) we have that Gain(π) = Gain(π′). It remains to prove
that π′ ∈ Λ∗(v). Let j ∈ Π, let n ∈ N, and let us assume that π′n ∈ Vj .
We have to prove that Gainj(π

′
≥n) ≥ λ∗(π′n). Since Occ(π′) = Occ(π), there

exists m ∈ N such that π′n = πm. We obtain :
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Gainj(π
′
≥n) = Gainj(π

′) (Gainj is prefix-independent)

= Gainj(π) (Inf(π) = Inf(π′))

= Gainj(π≥m) (Gainj is prefix-independent)

≥ λ∗(πm) (π ∈ Λ∗(v))

= λ∗(π′n) (π′n = πm).

Finally, we proceed exactly as explained before to obtained a lasso
ρ(0,v0) = h`ω with |h`| ≤ 2 · |V |2 from 〈σ〉v0 . Morever, ρ(0,v0) ∈ Λ∗(v0) and
Gain(ρ(0,v0)) = Gain(〈σ〉v0).

By construction the obtained finite symbolic witness is a good symbolic wit-
ness.
(2 =⇒ 3) : It is a direct consequence of Proposition 7.2.6.
(3 =⇒ 1) : Obviously true.

a Recall that we change the max by a min since we here consider gain functions instead
of cost functions.

We are now able to prove Theorem 9.2.1.

Proof of Theorem 9.2.1. We begin with the NP membership. The objectives
considered in Theorem 9.2.1 are such that we can apply Proposition 9.2.2.
Given thresholds x, y ∈ {0, 1}|Π|, there exists a weak SPE in (G, v0) with gain
profile p such that x ≤ p ≤ y if and only if there exists a finite good symbolic
witness P that contains a lasso ρ(0,v0) with gain profile p and such that for all
ρ(i,v) ∈ P,there exist h ∈ Hist(v) and ` ∈ Hist such that h` ∈ Hist(v), |h`| ≤
2 · |V |2 and ρ(i,v) = h`ω. Hence a nondeterministic polynomial algorithm
works as follows: guess a set P composed of at most |Π| · |V |+ 1 lassoes that
may be represented thanks to a prefix of lenght at most 2·|V |2 and check that
P is a good symbolic witness that contains a lasso ρ(0,v0) with gain profile p
such that x ≤ p ≤ y. Clearly checking that P is a finite symbolic witness can
be done in polynomial time. Checking that it is good requires to compute
the gain profiles of its lassoes and to compare them. This can also be done in
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polynomial time for co-Büchi, Parity, Muller, Rabin, and Streett objectives.
We now proceed to the NP-hardness. It is obtained thanks to a polynomial
reduction from SAT. In [Umm08] is provided a polynomial reduction from
SAT to the constrained existence problem of NEs in Boolean games with
co-Büchi objectives. Due to the structure of the game constructed in this
approach, the same reduction holds for the constrained existence problem
of weak SPEs. As co-Büchi objectives can be polynomially translated into
Parity, Muller, Rabin, and Streett objectives (see [GTW02]), the constrained
existence problem for Boolean games with those objectives is also NP-hard.

9.3 P-Completeness for Büchi Games

This section is devoted to the proof of the following result.

Theorem 9.3.1. The constrained existence problem of weak SPEs in multi-
player Büchi games is P-complete.

Recall that for all i ∈ Π and for all k ∈ N the set of vertices W k
i = {v ∈

Vi | λk(v) = 1} and, for all k ∈ N, W k
= {W k

i | i ∈ Π} (Section 9.1.1).

In order to prove Theorem 9.3.1, we prove that: (i) for some k ∈ N,
x, y ∈ {0, 1}|Π| and w ∈ V , if the set W k is given, deciding if there exists
a play ρ ∈ Plays(w) such that x ≤ Gain(ρ) ≤ y and ρ |= λk can be done
in polynomial time (Proposition 9.3.3) and (ii) the set W ∗ can be computed
in polynomial time (Corollary 9.3.5). From (i) and (ii), we obtain that the
constrained existence problem of weak SPEs is decidable in P.

In [Umm08], Ummels provides an algorithm to decide a problem similar to
(i), we detail this algorithm in Section 9.3.1 and in Section 9.3.2 we explain
how we use it to decide the constrained existence problem of weak SPEs in P.
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9.3.1 Deciding the constrained existence problem of NEs

In [Umm08], Ummels studies the constrained existence problem but for NEs
instead of weak SPEs. Since we use the same kind of approach to prove that
the constrained existence problem of weak SPEs in Büchi games belongs to P,
we summarize the approach of [Umm08] in this section.

Constrained existence problem of NEs Let (G, v0) be a Boolean game,
given x and y in {0, 1}|Π|, we want to decide if there exists an NE σ in (G, v0)

such that x ≤ Gain(〈σ〉v0) ≤ y. We call this decision problem the constrained
existence problem of NEs.

NE outcome characterization Ummels proved that this problem belongs
to P [Umm08] for Büchi games. To prove this result, he uses an outcome char-
acterization of NEs. This characterization is based on the notion of winning
vertices. A winning vertex v ∈ V for a player i ∈ Π is a vertex owned by
Player i such that he has a strategy, called a winning strategy, which ensures
the achievement of his objective whatever the strategy of the coalition of the
other players. This set of vertices is denoted by Wi and it is well known that
this set can be computed in polynomial time [Tho95]. The sets Wi for all
i ∈ Π provide a kind of labeling of the vertices which imposes constraints on
the plays which can be outcomes of NEs. In the same spirit as Lemma 9.1.1
for weak SPEs, the main idea is that a play ρ is the outcome of an NE if and
only if for each player i ∈ Π either this play has gain 1 for Player i or ρ does
not cross the set Wi. Indeed, if Player i achieves his objective along ρ, he has
no incentive to deviate from his strategy. On the contrary, if Player i does
not achieve his objective along ρ and there exists n ∈ N such that ρn ∈ Wi,
since ρn is a winning vertex for Player i, Player i has a profitable deviation by
following his winning strategy from ρn. The characterization can be rephrased
in the following way:

Proposition 9.3.2 (NE outcome characterization [Umm08]). Let (G, v0) be
a Büchi game and ρ ∈ Plays(v0), there exists an NE σ in (G, v0) such that
〈σ〉v0 = ρ if and only if for each i ∈ Π, Gaini(ρ) = 0 ⇒ ∀n ∈ N st. ρn ∈
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Vi, ρn 6∈Wi.

Deciding the constrained existence problem of NEs Let (G, v0) be a
Büchi game, let x, y ∈ {0, 1}|Π|, we want to decide the constrained existence
problem of NEs in (G, v0). Due to Proposition 9.3.2, we only have to find
ρ ∈ Plays(v0) such that x ≤ Gain(ρ) ≤ y and ρ is the outcome of an NE in
(G, v0).

Since Inf(ρ) is a strongly connected set of vertices, it amounts to finding
a strongly connected set of vertices from which it is possible to build a play
ρ which satisfies the constraints and the condition to be the outcome of an
NE. It is done by first finding some strongly connected sets in the graph and
then refine it. The algorithm developed by Ummels runs in polynomial time
and works as follows: (i) it computes Wi for each i ∈ Π, (ii) since yi = 0

implies that Player i has to obtain a gain of 0, it removes beforehand the set
Fi from V by computing X = V \(

⋃
i∈Π:yi=0 Fi) and (iii) it runs Algorithm 3

on X. The inputs of this procedure are a Boolean game and two thresholds
x, y ∈ {0, 1}|Π|. The output is the set Z of vertices such that for each v ∈ Z,
there exists a play ρ ∈ Plays(v) such that: (i) x ≤ Gain(ρ) ≤ y and (ii) ρ is
the outcome of an NE in (G, v). Notice that even if Algorithm 3 has the set
X in input, in line 8 computing the set of vertices from which the SCC C is
reachable is done in G�V \∪i∈LWi

.

9.3.2 P-completeness of the constrained existence problem of
weak SPEs in Büchi games

Thanks to the outcome characterization provided in Section 7.4.1 and the ideas
of the algorithm explained for NEs in Section 9.3.1, we prove that the con-
strained existence problem of weak SPEs in multiplayer Büchi games belongs
to P.

We recall that in the same way as the setsWi for all i ∈ Π for NEs, the sets
W k
i for all i ∈ Π impose some constraints on the candidate plays to be outcomes

of weak SPEs. Thus, let k ∈ N, thanks to Lemma 9.1.1, if we know W
k, we

may use the Ummels algorithm to decide the existence of a play ρ ∈ Plays(v)

1A non-trivial SCC is an SCC with at least one edge.
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Algorithm 3: SolveSubgame(X)

1 Z = ∅;
2 Decompose G�X into strongly connected components ;
3 foreach non-trivial SCC1C do
4 L = {i ∈ Π | C ∩ Fi = ∅} ;
5 if i 6∈ L for each i such that xi = 1 then
6 Y = C\(

⋃
i∈LWi) ; // we check if ∀i ∈ L, C ∩Wi = ∅

7 if Y = C then
8 Z = Z ∪ {v ∈ V | C is reachable from v in G�V \(

⋃
i∈LWi)}

9 else // C is not a good candidate
10 Z = Z ∪ SolveSubgame(Y );
11 return Z

such that x ≤ Gain(ρ) ≤ y and ρ |= λk for some x, y ∈ {0, 1}|Π|. Indeed,
we only have to (i) assume that the set W k is given in input, (ii) compute
X = V \(

⋃
i∈Π:yi=0 Fi) (iii) replace the setsWi byW k

i and (iv) run Algorithm 3

on X. Since the only differences with Algorithm 3 are the assumption thatW k

is given in input and the utilization of the sets W k
i instead of the sets Wi, the

correctness and the polynomial running time of this approach hold from those
of Algorithm 3. All these reasons provide a proof sketch of Proposition 9.3.3.

Proposition 9.3.3. Let k ∈ N, x, y ∈ {0, 1}|Π| and w ∈ V , given W
k,

deciding if there exists a play ρ ∈ Plays(w) such that (i) x ≤ Gain(ρ) ≤ y

and (ii) ρ |= λk can be done in polynomial time.

If we prove that we can obtain the setW ∗ in polynomial time, we are done.
Since we know that k∗ is polynomial and that λ0(v) = 0 for all v ∈ V , we only
have to prove that we can compute W k+1 from W

k in polynomial time.

Proposition 9.3.4. Given W k for some k ∈ N, the set W k+1 can be com-
puted in polynomial time.
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Proof. First, we recover from W
k the labeling function λk. Then

from λk we compute the function λk+1: for all v ∈ V , λk+1(v) =

maxv′∈Succ(v) min{Gaini(ρ) | ρ ∈ Λk(v′)} if v ∈ Vi for some i ∈ Π. The com-
putation of min{Gaini(ρ) | ρ ∈ Λk(v′)} is done as follows: (i) this min = 0

if and only if there exists ρ ∈ Plays(v′) such that ρ |= λk and Gaini(ρ) = 0,
thus (ii) we use Proposition 9.3.3 with x such that for all j ∈ Π xj = 0 and
y such that yi = 0 and yj = 1 for all j 6= i. If the answer to this decision
problem is yes, then min = 0, otherwise min = 1. This is done in polynomial
time.
Due to maxv′∈Succ(v), we have to do it at most |E| ≤ |V |2 times. Since we
proceed as previously for each v ∈ V , we do this whole procedure at most
|V | · |V |2 times. From λk+1 we build the set W k+1. It follows that we can
compute W k+1 from W

k in polynomial time.

Corollary 9.3.5. The set W ∗ can be computed in polynomial time.

Proof. We begin by computing W 0
i for all i ∈ Π. Since for all v ∈ V ,

λ0(v) = 0, these sets can be computed in polynomial time. Then, thanks
to Proposition 9.3.4, we can compute iteratively each set W k+1 from the set
W

k in polynomial time until we obtain W ∗. Due to Lemma 7.4.2, we know
that we have to proceed in this way a polynomial number of times.

Proof of Theorem 9.3.1. P-membership Let x, y ∈ {0, 1}|Π|, we want to de-
cide if there exists a weak SPE σ such that x ≤ Gain(〈σ〉v0) ≤ y. Thanks to
Theorem 7.4.3, it amounts to deciding the existence of a play ρ ∈ Plays(v0)

such that ρ |= λ∗ and x ≤ Gain(ρ) ≤ y. Therefore we only have to use
Proposition 9.3.3 with x, y and the set W ∗ which is computable in polyno-
mial time (Corollary 9.3.5). If the answer to this decision problem is yes,
then there exists a weak SPE σ which satisfies the constraints given by the
constrained existence problem, otherwise there does not exist such a weak
SPE.
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P-hardness The P-hardness is due to a logspace reduction from the Circuit
Value Problem which is known to be P-complete [Sip13, Theorem 10.44]. The
main idea is that a Boolean circuit can be reduced to a Boolean game with
Büchi objectives and with two players. In this corresponding game, loops
are added to the leaves and Player 1 (resp. Player 2) owns OR-gates (resp.
AND-gates). The Büchi objective of Player 1 (resp. Player 2) are positive
leaves (resp. negative leaves) of the circuit. The circuit evaluates to true
if and only if there exists a weak SPE in the corresponding game with gain
profile (1, 0).

Remark 9.3.6. Notice that the major difference with the naive algorithm of
Section 9.1 is when we want to check the existence of a λk-consistent play such
that its gain profile lies between two thresholds. In the algorithm for Büchi
games, we are able to directly check existence of a λk-consistent play such that
its gain profile lies between two thresholds in polynomial time. While in the
naive approach, we only check the existence of a λk-consistent play with a
given gain profile and thus we have to check all possible gain profiles between
the two thresholds. This phenomenon appears when:

• We have to compute the min to obtainW k+1 fromW
k. In the algorithm

for Büchi games, we only have to check the existence of a λk-consistent
play with gain profile p and such that x ≤ p ≤ y with x = (0, . . . , 0, xi =

0, 0, . . . , 0) and y = (1, . . . , 1, yi = 0, 1, . . . , 1) while in the naive algorithm
we have to check one by one all p ∈ {0, 1}|Π| such that x ≤ p ≤ y

and pi = 0. That is potentially an exponential number of possible gain
profiles.

• In the same way, whenW ∗ is build and we want to decide the constrained
existence problem with thresholds x, y ∈ {0, 1}|Π|. In the algorithm for
Büchi games, we only have to check once the existence of a λ∗-consistent
play with gain profile between x and y. While with the naive approach,
one have to check the existence of a λ∗-consistent play with gain profile
p for all p ∈ {0, 1}|Π| and x ≤ p ≤ y.
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9.4 P-Completeness for Explicit Muller Games

This section is devoted to the proof of Theorem 9.4.1 which states that the
constrained existence problem of weak SPEs in multiplayer Explicit Muller
games is P-complete.

The proof relies on the naive algorithm explained in Section 9.1. Indeed, in
the case of multiplayer Explicit Muller the number of realizable gain profiles in
the game is polynomially bounded and the complexity of the algorithm which
checks if there exists a play with a given gain profile runs in polynomial time.

Theorem 9.4.1. The constrained existence problem of weak SPEs in multi-
player Explicit Muller games is P-complete.

Proof. Let (G, v0) = (A,Gain) be an Explicit Muller game and, for all i ∈ Π,
let Fi ⊆ 2V be the set of subsets of vertices associated with the Explicit
Muller objective of Player i.

P-membership: In this case m = maxv∈V |P(v)| is polynomial. Indeed,
for all v ∈ V , if there exists a play ρ with gain profile p from v, then either
Inf(ρ) ∈ ∪i∈ΠFi or p = (0, . . . , 0). It follows:

P(v) ⊆ {(0, . . . , 0)} ∪ {p ∈ {0, 1}|Π| | ∃F ∈ ∪i∈ΠFi, pi = 1⇔ F ∈ Fi}.

It follows that |P(v)| ≤ | ∪i∈Π Fi|+ 1 and m are polynomial.
Additionally, in Explicit Muller game, deciding if there exists a play with
a given gain profile from a given vertex can be done in polynomial time
(Lemma 2.2.23). Thus path is polynomial.
Proposition 9.1.5 allows us to conclude that the constrained existence
problem of weak SPEs in Explicit Muller games belongs to P.

P-hardness: The P-hardness is obtained thanks to a reduction from the
AND-OR graph reachability problem that is P-complete [Imm81]. Indeed,
the P-hardness of the constrained existence problem for SPEs (instead
of weak SPEs) in Boolean games with Reachability objectives is proved
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in [Umm05, Corollary 6.22] thanks to such a reduction, and it is not dif-
ficult to see that the same reduction also holds for weak SPEs and Explicit
Muller objectives.



CHAPTER 10

QUALITATIVE REACHABILITY AND SAFETY GAMES

Theorem 10.0.1. The constrained existence problem of weak SPEs in
Boolean games with qualitative Reachability or Safety objectives is PSPACE-
complete.

Recall that weak SPEs and SPEs are equivalent notions for qualitative
Reachability objectives (Proposition 7.5.4). It follows from Theorem 10.0.1
that the constrained existence problem of SPEs (instead of weak SPEs) for
Boolean games with qualitative Reachability objectives is PSPACE-complete.
We will see later (in Section 10.3, from the proof of Theorem 10.0.1) that the
constrained existence problem of SPEs is also PSPACE-complete for Safety
objectives.

Corollary 10.0.2. The constrained existence problem of SPEs in Boolean
games with qualitative Reachability and Safety objectives is PSPACE-
complete.

We detail the proof of Theorem 10.0.1 in the next two sections for qualita-
tive Reachability objectives, and we also show how to adapt it for Safety ob-
jectives. To get the PSPACE-easiness, we transform the Boolean game (G, v0)

171
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with qualitative Reachability objectives (which are not prefix-independent)
into its associated extended game (X , x0) (Definition 4.2.1). In this way, it is
possible to use the concept of good symbolic witness as done before in Sec-
tion 9.2. Even if the size of the extended game (X , x0) is exponential in the size
of the initial game (G, v0), we manage to get a PSPACE-membership thanks to
the classical complexity result PSPACE = APTIME. The PSPACE-hardness
is obtained with a polynomial reduction from QBF. The reduction is more in-
volved than the one in Theorem 9.2.1. Indeed the reduction for NP-hardness
already works for NEs whereas the reduction for PSPACE-hardness really ex-
ploits the subgame perfect aspects.

10.1 PSPACE-membership

We here prove that the constrained existence problem of weak SPEs is in
PSPACE for qualitative Reachability objectives, and we then explain how to
adapt the proof for Safety objectives.

Proposition 10.1.1. The constrained existence problem of weak SPEs in
qualitative Reachability games is in PSPACE.

Proof. First, we transform the qualitative Reachability game (G, v0) into its
associated extended game (X , x0).
Let us recall that there is a one-to-one correspondence between plays ρ =

v0v1 . . . vk . . . in G from v0 and ρ′ = (v0, I0)(v1, I1) . . . (vk, Ik) . . . in X from
(v0, I0), with the important property that

Ik ⊆ Ik+1 for all k ≥ 1. (10.1)

In particular, there exists a weak SPE with gain profile p in (G, v0) if and
only if there is one in (X , x0) with gain profile p if and only if there is a good
symbolic witness P containing a play ρ(0,x0) with gain profile p in (X , x0) (by
Corollary 7.4.8).
Second, let us prove that one may consider that the plays in the symbolic
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witness are lassoes of the form h`ω with |h`| polynomially bounded by

(|Π|+ 1) · |V |. (10.2)

Indeed recall that a play ρ(i,v) in P is (i) a λ∗-consistent play ρ(0,v0) with gain
profile p if (i, v) = (0, v0); or (ii) if (i, v) 6= (0, v0), ρ(i,v) is a λ∗-consistent
play with Gaini(ρ

(i,v)) = min{Gaini(ρ
′) | ρ′ ∈ Λ∗(v)} (see the proof 2⇒ 3 of

Theorem 7.3.1)
Consider such a play ρ = (v1, I1)(v2, I2) . . . (vk, Ik) . . . from v1. By (10.1),
there exists I ⊆ Π and k ∈ N such that for all k′ ≥ k, Ik′ = I. Hence
from ρ, we can construct a lasso ρ′ of length bounded by (10.2) such that
First(ρ′) = First(ρ), Occ(ρ′) ⊆ Occ(ρ), and Gain(ρ′) = Gain(ρ),

• by eliminating all cycles in the history (v1, I1)(v2, I2) . . . (vk−1, Ik−1)

(leading to a history of length at most |Π| · |V |), and

• by detecting in the play (vk, I)(vk+1, I) . . . the first repeated vertex
(vk′ , I) = (vk′+`+1, I) and replacing this play by the lasso

(vk, I)(vk+1, I) . . . ((vk′ , I) . . . (vk′+`, I))ω

of length at most |V |.

In this way, if ρ is a λ∗-consistent play with gain profile p from v, then
the constructed lasso ρ′ is also a λ∗-consistent play with gain profile p from v.

Third we prove PSPACE-membership of the constrained existence problem
by proving that it is in APTIME. Given the extended game (X , x0) and
two thresholds x, y ∈ {0, 1}|Π|, the alternating Turing machine works as
follows. Existential and universal states (respectively controlled by Player ∨
and Player ∧) alternate along an execution of the machine. Player ∨ proposes
a lasso ρ(j,u) of length bounded by (|Π| + 1) · |V | (in the initial state, he
proposes a lasso ρ(0,x0)). Then Player ∧ chooses a vertex w ∈ V X

i , for some
i ∈ Π, of ρ(j,u) and proposes to move to v such that (w, v) ∈ EX . Player ∨
reacts by proposing a lasso ρ(i,v) of length bounded by (|Π|+ 1) · |V |, and so
on. The execution stops after

2 · |Π|2 · |V |+ 1 turns. (10.3)
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Such an execution is accepting if:

• for the gain profile p of the initial lasso ρ(0,x0), we have x ≤ p ≤ y;

• for each lasso ρ(j,u) proposed by Player ∨, for the corresponding move
(w, v) ∈ EX with w ∈ V X

i made by Player ∧, and the answer ρ(i,v) of
Player ∨, we have GainXi (ρ

(j,u)
≥k ) ≥ GainXi (ρ

(j,u)
k ρ(i,v)), if w = ρ

(j,u)
k .

The intuition is that if there exists in (X , x0) a finite good symbolic witness
P containing a lasso ρ(0,v0) with gain profile p such that x ≤ p ≤ y, then
Player ∨ will play with the lassoes of P according to Definition 7.2.3. Notice
that along an execution of the Turing machine, Player ∧ has no interest to
choose twice the same pair (i, v) since Player ∨ will react with the same lasso
ρ(i,v). Remembering property (10.1), the maximum number of times that
Player ∧ has to play is

|Π|2 · |V |. (10.4)

Indeed for a fixed I ⊆ Π, Player ∧ can choose at most |Π| · |V | different pairs
(i, v′) with v′ of the form (v, I), and the size of I can only increase. This
explains the number of turns of any execution of the machine (see (10.3)):
an initial lasso proposed by Player ∨ followed by |Π|2 · |V | alternations
between moves of both Players ∨ and ∧.

If we stop the proof here, the latter procedure is in fact not in APTIME since
it works on the extended game which has an exponential size in the size of
(G, v0). It is not a problem since, all this procedure may be done “on-the-fly”
without explicitely building the extended game. Let us briefly explain how
it is possible.

1. At the beginning of the procedure Player ∨ proposes a lasso ρ(0,v0) in
(G, v0) beginning in v0 such that ρ(0,v0) = h`ω and |h`| ≤ (|Π|+ 1) · |V |.
Then, one can polynomially obtained the corresponding lasso ρ(0,x0)X

in (X , x0) by enhancing each vertex of ρ(0,v0) by the set of players
that have reached their target set in the prefix. That is: ρ(0,x0)X =

(v0, I0)(v1, I1) . . . (vk, Ik) . . . with I0 = {i ∈ Π | v0 ∈ Fi} and Ik =

Ik−1 ∪ {i ∈ Π | vk ∈ Fi}.
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2. Then Player ∧ chooses a vertex (vk, Ik) along ρ(0,x0)X and a successor
w ∈ Succ(vk) in (G, v0). The corresponding successor in (X , x0) is
(w, I) with I = Ik ∪ {i ∈ Π | w ∈ Fi}.

3. If vk ∈ Vi, Player ∨ has now to (i) remember that w is enhanced by
the set of players I; (ii) proposes a lasso ρ(i,w) in (G, v0) beginning in
w such that ρ(i,w) = h`ω and |h`| ≤ (|Π| + 1) · |V | and (iii) building
on-the-fly the corresponding lasso ρ(i,w)X in (X , x0) beginning in (w, I)

in the same way as before.

In this way, checking whether an execution is accepting is done in polynomial
time since Player ∨ proposes lassoes of polynomial size by (10.2), there is a
polynomial numbers of turns by (10.3), and computing and comparing gain
profiles of those lassoes is done in polynomial time. Indeed, given ρX =

(v1, I1)(v2, I2) . . ., it is not necessary to explicitely know FXi to compute
GainXi (ρX): GainXi (ρX) = 1 if and only if there exists k ∈ N such that
i ∈ Ik. So the constrained existence problem of weak SPEs in qualitative
Reachability games is in APTIME = PSPACE.

The constrained existence problem of weak SPEs in multiplayer Safety
games is solved similarly.

Proposition 10.1.2. The constrained existence problem of weak SPEs in
mutliplayer Safety games is in PSPACE.

10.2 PSPACE-hardness

We now prove that the constrained existence problem of weak SPEs is PSPACE-
hard for multiplayer qualitative Reachability games, and we then show how to
adapt the proof for multiplayer Safety games.

Proposition 10.2.1. The constrained existence problem of weak SPEs in
qualitative Reachability games is PSPACE-hard.
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To prove this proposition, we give a polynomial reduction from the QBF
problem that is PSPACE-complete. This problem is to decide whether a fully
quantified Boolean formula ψ is true. The formula ψ can be assumed to be in
prenex Conjunctive Normal Form (CNF) Q1x1Q2x2 . . . Qmxm φ(X) such that
the quantifiers are alternating existential and universal quantifiers (Q1 = ∃,
Q2 = ∀, Q3 = ∃, . . .), X = {x1, x2, . . . , xm} is the set of quantified variables,
and φ(X) = C1 ∧ . . .∧Cn is an unquantified Boolean formula over X equal to
the conjunction of the clauses C1, . . . , Cn.

Such a formula ψ is true if there exists a value of x1 such that for all
values of x2, there exists a value of x3 . . ., such that the resulting valua-
tion ν of all variables of X evaluates φ(X) to true. Formally, for each odd
(resp. even) k, 1 ≤ k ≤ m, let us denote by fk : {0, 1}k−1 → {0, 1}
(resp. gk : {0, 1}k−1 → {0, 1}) a valuation of variable xk given a valuation
of previous variables x1, . . . , xk−1

1. Given theses sequences f = f1, f3, . . . and
g = g2, g4, . . ., let us denote by ν = ν(f,g) the valuation of all variables of X
such that ν(x1) = f1, ν(x2) = g2(ν(x1)), ν(x3) = f3(ν(x1)ν(x2)), . . .. Then

ψ = Q1x1Q2x2 . . . Qmxm φ(X) is true
if and only if

there exist f = f1, f3, . . . such that for all g = g2, g4, . . ., the valuation νf,g
evaluates φ(X) to true.

Let us detail a polynomial reduction from the QBF problem to the con-
strained existence problem of weak SPEs in Boolean games with qualitative
Reachability objectives. Let ψ = Q1x1Q2x2 . . . Qmxm φ(X) with φ(X) = C1∧
. . . ∧ Cn be a fully quantified Boolean formula in prenex Conjunctive Normal
Form. We build the following Boolean game Gψ = (Π, V, (Vi)i∈Π, E, (Gaini)i∈Π)

(see Figure 10.1):

• the set V of vertices:

– for each variable xk ∈ X under quantifier Qk, there exist vertices
xk, ¬xk and qk;

– for each clause Ck, there exist vertices ck and tk;
1Notice that f1 : ∅ → {0, 1}.
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– there exists an additional vertex tn+1;

• the set E of edges:

– from each vertex qk there exist an edge to xk and an edge to ¬xk;

– from each vertex xk and ¬xk, there exists an edge to qk+1, except
for k = m where this edge is to c1;

– from each vertex ck, there exist an edge to tk and an edge to ck+1,
except for k = n where there exist an edge to tn and an edge to
tn+1;

– there exists a loop on each tk;

• the set Π of n+ 2 players:

– each player i, 1 ≤ i ≤ n, owns vertex ci;

– Player n+ 1 (resp. n+ 2) is the player who owns the vertices qi for
each existential (resp. universal) quantifier Qi;

– as all other vertices have only one outgoing edge, it does not matter
which player owns them;

• each function Gaini is associated with the objective of visiting the set Fi
defined as follows:

– for all i, 1 ≤ i ≤ n, Fi = {` ∈ V | ` is a literal of clause Ci} ∪ {ti};

– Fn+1 = {tn+1};

– Fn+2 = {t1, . . . , tn}.

q1 q2 q3 . . . qm c1 . . . cn tn+1

x1

¬x1

x2

¬x2

xm

¬xm

t1 tn

Figure 10.1: Reduction from the formula ψ to the Boolean game Gψ
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Remark 10.2.2. (1) Notice that a sequence f of functions fk : {0, 1}k−1 →
{0, 1}, with k odd, 1 ≤ k ≤ m, as presented above, can be translated into a
strategy σn+1 of Player n+ 1 in the initialized game (Gψ, q1), and conversely.
Similarly, a sequence g of functions gk : {0, 1}k−1 → {0, 1}, with k even,
1 ≤ k ≤ m is nothing else than a strategy σn+2 of Player n+2. (2) Notice also
that if ρ is a play in (Gψ, q1), then Gainn+1(ρ) = 1 if and only if Gainn+2(ρ) = 0.
Moreover, suppose that ρ visits tn+1, then for all i, 1 ≤ i ≤ n, Gaini(ρ) = 1 if
and only if for all i, 1 ≤ i ≤ n, ρ visits a vertex that is a literal of Ci if and
only if there is a valuation of all variables of X that evaluates φ(X) to true.

Proof of Proposition 10.2.1. The game Gψ can be constructed from ψ in poly-
nomial time. Let us now show that ψ is true if and only if there exists a
weak SPE in (Gψ, q1) with a gain profile p ≥ (0, . . . , 0, 1, 0) (that is, such
that pn+1 = 1).

(⇒) Suppose that ψ is true. Then there exists a sequence f of functions
fk : {0, 1}k−1 → {0, 1}, with k odd, 1 ≤ k ≤ m, such that for all sequences g
of functions gk : {0, 1}k−1 → {0, 1}, with k even, 1 ≤ k ≤ m, the valuation
νf,g evaluates φ(X) to true. We define a strategy profile σ as follows:

• for Player n+ 1, his strategy σn+1 is the strategy corresponding to the
sequence f (by Remark 10.2.2);

• for Player n+ 2, his strategy is an arbitrary strategy σn+2; we denote
by g the corresponding sequence gk : {0, 1}k−1 → {0, 1}, with k even,
1 ≤ k ≤ m (by Remark 10.2.2);

• for each player i, 1 ≤ i ≤ n,

– if hv ∈ Histi(q1) with v = ci, is consistent with σn+1, then
σi(hv) = ci+1 if i 6= n and tn+1 otherwise

– else σi(hv) = ti.

Let us prove that σ is a weak SPE, that is, for each history hv ∈ Hist(q1),
there is no one-shot deviating strategy in the subgame (Gψ�h, v) that is prof-
itable to the player who owns vertex v (by Proposition 2.4.18). This is clearly
true for all v = ti, 1 ≤ i ≤ n + 1, since ti has only one outgoing edge. For
the other vertices v, we study two cases:
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• hv is consistent with σn+1: First notice that Gain(ρ) = (1, 1, . . . , 1, 0)

with ρ = h〈σ�h〉v. Indeed by hypothesis, the valuation νf,g evaluates
φ(X) to true. Hence by Remark 10.2.2, the play ρ visits a vertex of
Fi for all i, 1 ≤ i ≤ n, and by definition of σ, ρ eventually loops
on tn+1. Second, as σn+2 is arbitrary in the definition of σ, using
another strategy σ′n+2 in place of σn+2 will lead to a play ρ′ such that
Gain(ρ′) = Gain(ρ) = (1, 1, . . . , 1, 0).

Now if hv is consistent with σn+1, it is maybe not consistent with σn+2,
but with another arbitrary strategy σ′n+2, and thus Gain(h〈σ�h〉v) =

(1, 1, . . . , 1, 0) as explained previously. Thus only Player n + 2 has an
incentive to deviate in the subgame (Gψ�h, v) to increase his gain. Nev-
ertheless, using another strategy σ′′n+2 will not change his gain (again
by the same argument).

• hv is not consistent with σn+1: Suppose that v = ck. Then by definition
of σ, the play h〈σ�h〉v eventually loops on tk leading to a gain of 1 for
Player k. This player has thus no incentive to deviate with a one-shot
deviation in the subgame (Gψ�h, v).

Suppose that v = qk. Then by definition of σ, the play ρ =

h〈σ�h〉v eventually loops on t1. It follows that Gainn+1(ρ) = 0 and
Gainn+2(ρ) = 1. As we only have to consider one-shot deviating strate-
gies, if qk ∈ Vn+2, Player n + 2 has no incentive to deviate, and if
qk ∈ Vn+1, Player n+ 1 could try to use a one-shot deviating strategy,
however the resulting play still eventually loops on t1.

This proves that σ is a weak SPE. Its gain profile is equal to p =

(1, 1, . . . , 1, 0) as explained previously. Therefore it satisfies the constraint
p ≥ (0, . . . , 0, 1, 0).

(⇐) Suppose that there exists a weak SPE σ in (Gψ, q1) with outcome ρ
and gain profile Gain(ρ) ≥ (0, . . . , 0, 1, 0), that is, Gainn+1(ρ) = 1. By Re-
mark 10.2.2, it follows that Gainn+2(ρ) = 0. We have to prove that ψ is true.
To this end, consider the sequence f of functions fk : {0, 1}k−1 → {0, 1},
with k odd, 1 ≤ k ≤ m, that corresponds to strategy σn+1 of Player n + 1
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by Remark 10.2.2. Let us show that for all sequences g of functions
gk : {0, 1}k−1 → {0, 1}, with k even, 1 ≤ k ≤ m, the valuation νf,g eval-
uates φ(X) to true.
By contradiction assume that it is not the case for some sequence g′ and
consider the related strategy σ′n+2 of Player n+ 2 by Remark 10.2.2. Notice
that σ′n+2 is a finitely deviating strategy. Let us consider the outcome ρ′ of
the strategy profile (σ′n+2, σ−(n+2)) from q1. As Gainn+2(ρ) = 0, we must
have Gainn+2(ρ′) = 0, otherwise σ′n+2 is a profitable deviation for Player n+2

whereas σ is a weak SPE. It follows that Gainn+1(ρ′) = 1 by Remark 10.2.2,
that is, ρ′ eventually loops on tn+1.
Now recall that the valuation νf,g′ evaluates φ(X) to false, which means that
it evaluates some clause Ck of φ(X) to false. Consider the history hck < ρ′.
As strategy σ′n+2 only acts on the left part of the underlying graph of Gψ,
we have ρ′ = 〈σ′n+2, σ−(n+2)〉q1 = h〈σ�h〉ck . In the subgame (Gψ�h, ck), the
outcome of σ�h gives a gain of 0 to Player k because ρ′ = h〈σ�h〉ck does not
visit tk and νf,g′ evaluates Ck to false. In this subgame, Player k has thus a
profitable one-shot deviation: to move to tk. It follows that σ is not a weak
SPE which is impossible. Therefore ψ is true.

For multiplayer Safety games, we can use the same reduction and the same
kind of arguments as for qualitative Reachability objectives.

Proposition 10.2.3. The constrained existence problem of weak SPEs in
multiplayer Safety games is PSPACE-hard.

Proof sketch. Given a fully quantified Boolean formula ψ, we construct the
same game as in the proof of Proposition 10.2.1 (see Figure 10.1), except
that each player i, 1 ≤ i ≤ n + 2, aims at avoiding the set F ′i (instead of
visiting the set Fi) defined as follows:

• for all i, 1 ≤ i ≤ n, F ′i = {` ∈ V | ` is a literal of clause Ci} ∪ {tn+1};

• F ′n+1 = {t1, t2, . . . tn};
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• F ′n+2 = {tn+1}.

Recall how the sets Fi were defined: Fn+1 = {tn+1}, Fn+2 = {t1, t2, . . . tn},
and for all i, 1 ≤ i ≤ n, Fi = {` ∈ V | ` is a literal of clause Ci} ∪ {ti}.
Hence we have a clear duality for players n + 1 and n + 2: a play ρ visits
Fn+1 (resp. Fn+2) if and only if ρ avoids F ′n+1 (resp. F ′n+2). This is not
the case for the other players, but one can check that the proof works in the
same way as for qualitative Reachability games.

10.3 PSPACE-completeness of the constrained exis-
tence problem of SPEs

In this section we prove Corollary 10.0.2 stating that the constrained existence
problem of SPEs (instead of weak SPEs) in multiplayer Boolean games with
qualitative Reachability and Safety objectives is PSPACE-complete.

Proof of Corollary 10.0.2. As weak SPEs and SPEs are equivalent no-
tions for qualitative Reachability objectives (Proposition 7.5.4), by Theo-
rem 10.0.1, the constrained existence problem of SPEs in multiplayer quali-
tative Reachability games is PSPACE-complete.
We need to use other arguments for the case of Safety objectives. The reduc-
tion from QBF proposed in the proof of Proposition 10.2.3 uses the game Gψ
of Figure 10.1. Due to the structure of the underlying graph, all weak SPEs
of Gψ are SPEs since any deviating strategy from a given strategy is neces-
sarily finitely deviating. This shows that the constrained existence problem
of SPEs is PSPACE-hard for Safety objectives. It is proved in [Umm05] that
this problem is in PSPACE.

10.4 Memory requirements

We conclude this chapter by proving that given an initialized multiplayer qual-
itative Reachability or Safety game (G, v0) and its associated extended game
(X , x0), there exists a weak SPE σ in (X , x0) with gain profile p ∈ {0, 1}|Π| if
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and only if there exists a weak SPE τ in (X , x0) with gain profile p and which
is finite-memory.

Proposition 10.4.1. Let (G, v0) be either a initialized multiplayer qualitative
Reachability or Safety game and let (X , x0) be its associated extended game.
Given a gain profile p ∈ {0, 1}|Π|, the following assertions are equivalent.

1. There exists a weak SPE σ in (X , x0) such that Gain(〈σ〉x0) = p;

2. There exists a finite good symbolic witness P in (X , x0) such that:

• there is ρ(0,x0) ∈ P such that Gain(ρ(0,x0)) = p;

• for each lasso ρ(i,x) ∈ P, this lasso has a length bounded by 2 ·
|V X |2 = 2 · 22·|Π| · |V |2.

3. There exists a weak SPE τ in (X , x0) such that Gain(〈τ〉x0) = p and
which has a memory size in O(|Π| · |V X |3) = O(23·|Π| · |Π| · |V |3).

Proof sketch. One way to be convinced by this result is the following. In
the extended game, the gain functions qRi and Safei, for some i ∈ Π, are
prefix-independent (Proposition 4.2.7). Thus, one can hope that the same
proof as the one used for Proposition 9.2.2 is also correct.

(1⇒ 2) The same arguments applyed on the extended to hold. Indeed,
the gain functions in the extended game are also prefix-independent. More-
over, the lassoes obtained by the procedure as such that, if π′ is obtained
from π: (i) if π′ = h`ω, then |h`| ≤ 2 · |V X |2 (ii) First(π′) = First(π),
Occ(π′) = Occ(π) and Inf(π′) = Inf(π). It follows that qRX(π′) = qRX(π)

(resp. SafeX(π′) = SafeX(π)). Finally, in the same way as in the proof
of Proposition 9.2.2, by replacing Inf(π′) = Inf(π) by Occ(π′) = Occ(π)

when needed, we have that if π is λ∗-constistent then π′ is also λ∗-consistent.
Hence, the obtained finite symbolic witness in (X , x0) is good by construction
and composed of lassoes with length bounded by 2 · |V X |2 = 2 · 22·|Π| · |V |2.

(2⇒ 3): This implication follows once again from Corollary 7.2.6 applied to
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the extended game. In this way, we obtain a weak SPE τ in (X , x0) such that
Gain(〈τ〉x0) = Gain(ρ(0,x0)) = p and with memory size in O(|Π| · |V X | · L)

with L = 2 · |V X |2. Therefore, we obtain a memory size in O(|Π| · |V |3 ·23·|Π|).

(3⇒ 1): Obvious.

Remark 10.4.2. Notice that we cannot use this result in the proof of the
PSPACE-membership of the constrained existence problem (Proposition 10.1.1)
since the obtained lassoes do not have a polynomial length.

Remark 10.4.3. On the contrary, we could use the elimination of unnecessary
cycles explained in the proof of Propostion 10.1.1 in the proof of Proposi-
tion 10.4.1 to obtain a better bound on the length of the lassoes. But the
resulting memory size would also be exponential in the size of (G, v0), since
the memory size would be in O(|V X | · |Π| · L) where L is an upper bound on
the length of the lassoes.

Remark 10.4.4. Even if this result provide an upper bound on the memory
size needed for a weak SPE in the extended game associated with a qualitative
Reachability or Safety game (G, v0), the corresponding weak SPE in (G, v0)

needs the same amount of memory.





CHAPTER 11

QUANTITATIVE REACHABILITY GAMES

In this chapter, based on [BBG+19, BBG+20], we prove that the CEP of
SPEs in multiplayer quantitative Reachability games is PSPACE-complete. In
fact, we prove that the CEP of weak SPEs in this kind of games is PSPACE-
complete, but since the concepts of SPE and weak SPE are equivalent in quan-
titative Reachability games (Corollary 2.4.23), this latter result allows us to
obtained the same complexity result for SPEs.

Theorem 11.0.1. The constrained existence problem of SPEs in multiplayer
quantitative Reachability games is PSPACE-complete.

Even if the outcome characterization of weak SPEs in quantitative Reach-
ability games (Corollary 7.4.13) provided in Section 7.4.3 allows to exactly
characterize the set of weak SPEs (and so of SPEs) outcomes in a multiplayer
quantitative Reachability game, the way the labeling functions (λk)k∈N, used
for this characterization, are defined does not allow us to obtain the PSPACE
algorithm to decide the constrained existence problem.

This is the reason why we need a more subtle approach. Roughly speaking,
the labeling function λk are still defined on the associated extended game but
this latter game is divided into regions. A region I in the extended game

185
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is the sub-arena in which all players belonging to I have already visited their
target set. The intuition is that these regions correspond to strongly connected
components (SCCs) in the extended game, and the algorithm which computes
the labeling functions λk, for all k ∈ N, proceeds in a bottom-up fashion: it
begins with the bottom strongly connected components (BSCCs) and once the
BSCCs are processed, the algorithm computes the values of all λk in the SCCs
which are a predecessor of a BSCC, and so one. For the same arguments as
those of the characterization which relies on the labeling functions given in
Definition 7.4.9, the plays which are λ∗-consistent for the labeling function
λ∗ obtained by this new procedure are exactly the plays which are outcomes
of weak SPEs. The PSPACE membership of the CEP is obtained due to a
fine-grained analysis of this procedure.

In Section 11.1, we formally define the notion of region and this bottom-
up algorithm. Our PSPACE algorithm to decide the CEP relies both on this
procedure and the on a the notion of counter graph: a graph which keeps track
of the constraints imposed by a labeling function along plays in a game. This
concept is formally defined in Section 11.2 and we provide some useful results
for the proof of PSPACE-easiness. Finally, Section 11.3 provides the proofs
of PSPACE-hardness and PSPACE-membership of the constrained existence
problem of weak SPEs (and SPEs) in multiplayer quantitative Reachability
games.

Since the approach is quite the same as the one followed in Chapter 7, the
proofs of Section 11.1 are relegated in Appendix B.1.1.

All along this chapter a game G = (A,Cost) depicts a multiplayer quan-
titative Reachability games, i.e., Costi = QRi for all i ∈ Π. Moreover, as
already done in some parts of this document, we do not always write CostXi
to refer to the cost function of Player i in the extended game. We prefer to
only write Costi when it is clear from the context that we are considering the
extended game.
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11.1 Regions decomposition and regions based algo-
rithm

11.1.1 Regions decomposition

By construction, the arena X of the initialized extended game is divided into
different regions according to the players who have already visited their target
set. Let us provide some useful notions with respect to this decomposition. (An
illustrative example is given hereafter.) We will often use them in the following
sections. Let I1 = {I ⊆ Π | there exists v ∈ V such that (v, I) ∈ Succ∗(x0)}
be the set of sets I accessible from the initial state x0, and let N = |I| be its
size. For I, I ′ ∈ I, if there exists ((v, I), (v′, I ′)) ∈ EX , we say that I ′ is a
successor of I and we write I ′ ∈ Succ(I). Given I ∈ I, XI = (V I , EI) refers
to the sub-arena of X restricted to the vertices {(v, I) ∈ V X | v ∈ V }. Hence
XI has all its vertices with the same second component I. We say that XI

is the region2 associated with I. Such a region XI is called a bottom region
whenever Succ(I) = I.

There exists a partial order on I such that I < I ′ if and only if I ′ ∈
Succ∗(I) \ {I}. We fix an arbitrary total order on I that extends this partial
order < as follows:

J1 < J2 < . . . < JN . (11.1)

(with XJN a bottom region).3 With respect to this total order, given n ∈
{1, . . . , N}, we denote by X≥Jn = (V ≥Jn , E≥Jn) the sub-arena of X restricted
to the vertices {(v, I) ∈ V X | I ≥ Jn}.

The total order given in (11.1) together with the I-monotonicity (see (4.1))
leads to the following lemma.

1This notation should not be confused with the one chosen to denote the set of tuples
(player,vertex) used in the definition of a symbolic witness in Section 7.2.1.

2In the rest of this part, we indifferently call region either XI , or V I , or I.
3We use notation Jn, n ∈ {1, . . . , N}, to avoid any confusion with the sets Ik appearing

in a play ρ = (v0, I0)(v1, I1) . . ..
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Lemma 11.1.1 (Region decomposition and section). Let π be a path in the
arena X of the extended game X . Then there exists a region decomposition
of π as

π[`]π[`+ 1] . . . π[m]

with 1 ≤ ` ≤ m ≤ N , such that for each n, ` ≤ n ≤ m:

• π[n] is a (possibly empty) path in X,

• every vertex of π[n] is of the form (v, Jn) for some v ∈ V .

Each path π[n] is called a section. The last section π[m] is infinite if and
only if π is infinite.

Example 11.1.2. Let us come back to the initialized game (G, v0) of Fig-
ure 4.1. Its extended game (X , x0) is depicted in Figure 4.3 (only the part
reachable from the initial vertex x0 = (v0, ∅) is depicted). As we can see, the
extended game is divided into three different regions: one region associated
with I = ∅ that contains the initial vertex x0, a second region associated with
I = {2}, and a third bottom region associated with I = {1, 2} = Π. Hence the
set I = {∅, {2},Π} is totally ordered as J1 = ∅ < J2 = {2} < J3 = Π.

For all vertices (v, I) of the region associated with I = {2}, we have (v, I) 6∈
FX1 and (v, I) ∈ FX2 , and for those of the region associated with I = Π, we
have (v, I) ∈ FX1 ∩ FX2 . The sub-arena X≥J2 of X is composed of all vertices
(v, I) such that I = {2} or I = Π.

From the SPE σ given in Example 7.4.14 with outcome ρ = (v0v1v6v7v2)ω ∈
PlaysA(v0) and cost (4, 4), we derive the SPE outcome ρX ∈ PlaysX(x0) equal
to

ρX = (v0, ∅)(v1, ∅)(v6, ∅)(v7, ∅)((v2,Π)(v0,Π)(v1,Π)(v6,Π)(v7,Π))ω

with the same cost (4, 4).
The region decomposition of ρX is equal to ρX [1]ρX [2]ρX [3] such that its

second section ρX [2] is empty, and its two other sections ρX [1] and ρX [3] are
respectively equal to

(v0, ∅)(v1, ∅)(v6, ∅)(v7, ∅), and ((v2,Π)(v0,Π)(v1,Π)(v6,Π)(v7,Π))ω.
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v0, ∅
4

v1, ∅
3

v6, ∅
2

v7, ∅
1

v3, ∅ +∞

v4, ∅
+∞

v5, {2}
+∞

v4, {2}
+∞

v0, {2}
0

v1, {2}
3

v6, {2}
2

v7, {2}
1

v3, {2}
+∞

v2, {1, 2}
0

v0, {1, 2}
0

v1, {1, 2}
0

v6, {1, 2}
0

v7, {1, 2}
0

v3, {1, 2}
0

v4, {1, 2}
0

v5, {1, 2}
0

Figure 11.1: The extended game (X , x0) for the initialized game (G, v0) of
Figure 4.1. The values of a labeling function λ∗ are indicated near each vertex.
The dashed rectangles correspond to the different regions reachable from x0.

11.1.2 Regions Based Algorithm

Definition 11.1.3 (Initial labeling). For all v ∈ V X , let i ∈ Π be such that
v ∈ V X

i ,

λ0(v) =

0 if i ∈ I(v)

+∞ otherwise.

This labeling function λ0 does not impose any constraint on the plays.

Lemma 11.1.4. ρ ∈ Λ0(v) if and only if ρ ∈ PlaysX(v).

Let us now explain how our algorithm computes the labeling functions λk,
k ≥ 1, and the related sets Λk(v), v ∈ V X . It works in a bottom-up manner,
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according to the total order J1 < J2 < . . . < JN of I given in (11.1): it
first iteratively updates the labeling function for all vertices v of the arena
XJN until reaching a fixpoint in this arena, it then repeats this procedure in
X≥JN−1 , X≥JN−2 , . . ., X≥J1 = X. Hence, suppose that we currently treat the
arenaX≥Jn and that we want to compute λk+1 from λk. We define the updated
function λk+1 as follows (we use the convention that 1 + (+∞) = +∞).

Definition 11.1.5 (Labeling update). Let k ≥ 0 and suppose that we treat
the arena X≥Jn , with n ∈ {1, . . . , N}. For all v ∈ V X ,

• if v ∈ V ≥Jn , let i ∈ Π be such that v ∈ V X
i , then

λk+1(v) =

0 if i ∈ I(v)

1 + min
(v,v′)∈EX

sup{Costi(ρ) | ρ ∈ Λk(v′)} otherwise

• if v 6∈ V ≥Jn , then
λk+1(v) = λk(v).

Let us provide some explanations. As this update concerns the arenaX≥Jn ,
we keep λk+1 = λk outside of this arena. Suppose now that v belongs to X≥Jn

and let i be such that v ∈ V X
i . We define λk+1(v) = 0 whenever i ∈ I(v)

(as already explained for the definition of λ0). When it is updated, the value
λk+1(v) represents what is the best cost that player i can ensure for himself
from v with a “one-shot” choice by only taking into account plays of Λk(v′)

with v′ ∈ Succ(v).

Notice that it makes sense to run the algorithm in a bottom-up fashion
according to the total ordering J1 < . . . < JN since given a play ρ = ρ0ρ1 . . .,
if ρ0 is a vertex of V ≥Jn , then for all k ∈ N, ρk is a vertex of V ≥Jn (by I-
monotonicity). Moreover running the algorithm in this way is essential to prove
that the constrained exsitence problem in quantitative Reachability games is
in PSPACE.

Example 11.1.6. We consider again the extended game (X , x0) of Figure 11.1
with the total order J1 = ∅ < J2 = {2} < J3 = JN = Π of its set I.
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Let us illustrate Definition 11.1.5 on the arena X≥J2 . Let k ≥ 0 and sup-
pose that the labeling function λk has been computed such that λk(v0, J2) = 0,
λk(v, J2) = +∞ for every other vertex in region XJ2 (notice that λk is not
the labeling function indicated in Figure 11.1). Let us show how to compute
λk+1(v1, J2). We need to compute sup{Cost1(ρ) | ρ ∈ Λk(v′)} for the two
successors v′ of (v1, J2), that is, respectively v′ = (v3, J2) and v′ = (v6, J2).
Recall that Λk(v′) is the set of all plays λk-consistent from v′. All the plays in
Λk(v6, J2) have cost 2 for player 1 and player 2: indeed, they all first follow the
history (v6, J2), (v7, J2), (v2, JN ). Thus, sup{Cost1(ρ) | ρ ∈ Λk(v6, J2)} = 2.
On the other hand, as λk(v3, J2) = +∞, the play (v3, J2)(v0, J2)(v4, J2)ω is λk-
consistent and belongs to Λk(v3, J2). Thus, sup{Cost1(ρ) | ρ ∈ Λk(v3, J2)} =

+∞. Hence, the minimum is attained with successor (v6, J2), and λk+1(v1, J2) =

3.

We can now provide our algorithm (see Algorithm 4) that computes the
sequence (λk(v))k∈N until a fixpoint is reached (see Proposition 11.1.7 below).
Initially, the labeling function is λ0 (see Definition 11.1.3). For the next steps
k > 0, we begin with the bottom region XJN of X and update λk−1 to λk as
described in Definition 11.1.5. At some point, the values of λk do not change
anymore in XJN and (λk)k∈N reaches locally (on XJN ) a fixpoint (see again
Proposition 11.1.7). Now, we consider the arena X≥JN−1 and in the same
way, we continue to update locally the values of λk in X≥JN−1 . We repeat
this procedure with arenas X≥JN−2 , X≥JN−3 , ... until the arena X≥J1 =

X is completely processed. From the last computed λk, we derive the sets
Λk(v), v ∈ V X , that we need for the characterization of outcomes of SPEs
(see Theorem 11.1.9 below). An example illustrating the execution of this
algorithm is given at the end of this section.

We now state that the sequence (λk)k∈N computed by this algorithm reaches
a fixpoint - locally on each arena X≥Jn and globally on X - in the following
meaning:

Proposition 11.1.7. There exists a sequence of integers 0 = k∗N < k∗N−1 <

. . . < k∗1 = k∗ such that
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Algorithm 4: Fixpoint

1 compute λ0

2 k ← 0

3 n← N

4 while n 6= 0 do
5 repeat
6 k ← k + 1

7 compute λk from λk−1 with respect to X≥Jn

8 until λk = λk−1

9 n← n− 1

10 return λk

• Local fixpoint: for all Jn ∈ I, all m ∈ N and all v ∈ V ≥Jn,

λk
∗
n+m(v) = λk

∗
n(v), (11.2)

• Global fixpoint: in particular, with k∗ = k∗1, for all m ∈ N and all
v ∈ V X ,

λk
∗+m(v) = λk

∗
(v).

The global fixpoint λk∗ is also simply denoted by λ∗, and each set
Λk
∗
(v), v ∈ V X , is denoted by Λ∗(v).

This proposition indicates that Algorithm 4 terminates. Indeed for each
Jn ∈ I, taking the least index k∗n which makes Equality (11.2) true shows that
the repeat loop is broken and the variable n decremented by 1. The value
n = 0 is eventually reached and the algorithm stops with the global fixpoint
λ∗. Notice that the first local fixpoint is reached with k∗N = 0 because XJN

is a bottom region. To prove that the algorithm stops in a finite number of
steps, we show that each region requires a finite number of steps to be treated.
To do so, we rely on the fact that constraint values on vertices cannot increase
from one step to another and that the set of constraint values can be seen as a
well-quasi ordering. Thus a decreasing sequence in this set is stationary, and
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this means our algorithm reaches a fixpoint and terminates.
Proposition 11.1.7 also shows that when a local fixpoint is reached in the

arena X≥Jn+1 and the algorithm updates the labeling function λk in the arena
X≥Jn , the values of λk(v) do not change anymore for any v ∈ V ≥Jn+1 but
can still be modified for some v ∈ V Jn . Recall also that outside of X≥Jn , the
values of λk(v) are still equal to the initial values λ0(v). These properties will
be useful when we will prove that the constrained existence problem of SPEs
in quantitative Reachability games is in PSPACE. They are summarized in the
next lemma.

Lemma 11.1.8. Let k ∈ N be a step of the algorithm and let Jn with n ∈
{1, . . . , N}. For all v ∈ V Jn:

• if k ≤ k∗n+1, then λ
k+1(v) = λk(v) = λ0(v),

• if k∗n ≤ k, then λk+1(v) = λk(v) = λk
∗
n(v),

Hence the values of λk(v) and λk+1(v) may be different only when k∗n+1 <

k < k∗n.

We are ready to state how we characterize plays that are outcomes of SPEs.
This is possible with the global fixpoint computed by Algorithm 4.

Theorem 11.1.9 (Characterization). Let (G, v0) be an initialized quantita-
tive game and (X , x0) be its initialized extended game. Let ρ0 be a play in
PlaysX(x0). Then ρ0 is the outcome of an SPE in (X , x0) if and only if
ρ0 ∈ Λ∗(x0).

Notice that this theorem also provides a characterization of the outcomes
of SPEs in (G, v0) by Lemma 4.2.6.

As in Proposition 7.4.11, when for some player i, the costs Costi(ρ) associ-
ated with the plays ρ in Λk(v) are unbounded, there actually exists some play
in this set that has an infinite cost. In other terms, either Λk(v) contains at
least one play ρ with an infinite cost Costi(ρ) or there exists a constant c ∈ N
such that Costi(ρ) ≤ c for all ρ ∈ Λk(v).
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Proposition 11.1.10. For every k ∈ N, for every v ∈ V X and for every
i ∈ Π, the following implication holds: if sup{Costi(ρ) | ρ ∈ Λk(v)} = +∞,
then there exists a play ρ ∈ Λk(v) such that Costi(ρ) = +∞.

The next corollary is a direct consequence of Proposition 11.1.10.

Corollary 11.1.11. sup{Costi(ρ) | ρ ∈ Λk(v)} = max{Costi(ρ) | ρ ∈
Λk(v)}.

Example 11.1.12. Let us come back to the running example of Figure 11.1
and illustrate Proposition 11.1.7. The different steps of Algorithm 4 are given
in Table 11.1. The columns indicate the vertices according to their region,
respectively Π, {2}, and ∅. Notice that for the region Π, we only write one
column v as for all vertices (v,Π) the value of λ is equal to 0 all along the
algorithm.

Recall that J1 = ∅ < J2 = {2} < J3 = Π = {1, 2}. The algorithm begins
with the arena XJ3 . A local fixpoint (λ1 = λ0) is immediately reached because
all vertices belong to the target set of both players in XJ3 . Thus the first local
fixpoint is reached with k∗3 = 0.

The algorithm then treats the arena X≥J2 . By Lemma 11.1.8, it is enough
to consider the region XJ2 . Let us explain how to compute λ2(v) from λ1(v) on
this region. For v = (v7, {2}), we have that λ2(v) = 1 +

min(v,v′)∈EX sup{Cost1(ρ) | ρ ∈ Λ1(v′)}. As the unique successor of v is
(v2, {1, 2}), all λ1-consistent plays beginning in this successor have cost 0 for
player 1. So, we have that λ2(v) = 1. For the computation of λ2(v6, {2}), the
same argument holds since (v6, {2}) has the unique successor (v7, {2}). The
vertex (v1, {2}) has two successors: (v6, {2}) and (v3, {2}).4 Again, we know
that all λ1-consistent plays beginning in (v6, {2}) have cost 2 for player 1. From
(v3, {2}) however, one can easily check that the play (v3, {2})(v0, {2})((v4, {2}))ω

is λ1-consistent and has cost +∞ for player 1. Thus, we obtain that λ2(v1, {2}) =

3. For the other vertices of XJ2 , one can see that λ2(v) = λ1(v).
Finally, we can check that the local fixed point is reached in the arena X≥J2

4The computation of λ2(v1, {2}) was already explained in Example 11.1.6.
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Table 11.1: The different steps of the algorithm computing λ∗ for the extended
game of Figure 11.1

Region {1, 2} {2} ∅
v v0 v1 v6 v7 v3 v4 v5 v0 v1 v6 v7 v3 v4

λ0 = λ1 0 0 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
λ2 = λ3 0 0 3 2 1 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
λ4 0 0 3 2 1 +∞ +∞ +∞ +∞ 3 2 1 +∞ +∞
λ5 = λ∗ 0 0 3 2 1 +∞ +∞ +∞ 4 3 2 1 +∞ +∞

(resp. X≥J1) with λ3 = λ2 (resp. λ6 = λ5 = λ∗). Therefore the respective
fixpoints are reached with k∗2 = 2 and k∗1 = 5. The labeling function indicated
in Figure 11.1 is the one of λ∗.

11.2 Counter graph

In the previous section, we have proposed an algorithm that computes a se-
quence of labeling functions (λk)k∈N until reaching a fixpoint λ∗ such that
the plays that are λ∗-consistent are exactly the SPE outcomes. In this sec-
tion, given a labeling function λ, we introduce the concept of counter graph
such that its infinite paths coincide with the plays that are λ-consistent. We
then show that the counter graph associated with the fixpoint function λ∗ has
an exponential size, an essential step to prove PSPACE membership of the
constrained existence problem of SPEs in quantitative Reachability games.
Technical proofs of this section are provided in Appendix B.1.2.

For the entire section, we fix a quantitative reachability game G =

(A, (Costi)i∈Π, , (Fi)i∈Π) with an arena A = (Π, V, (Vi)i∈Π, E), and v0 an initial
vertex. Let X = (X, (Costi)i∈Π, (F

X
i )i∈Π) with the arena X =

(Π, V X , (V X
i )i∈Π, E

X) be its associated extended game. Furthermore, when
we speak about a play ρ we always mean a play in the extended game X .

A labeling function λ give constraints on costs of plays from each vertex in
X, albeit only for the player that owns this vertex. However, by the property
of λ-consistence, constraints for a player carry over all the successive vertices,
whether they belong to him or not. In order to check efficiently this property,
we introduce the counter graph to keep track explicitly of the accumulation of
constraints for all players at each step of a play. Let us first fix some notation.
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Definition 11.2.1 (Restriction and maximal finite range). Let λ : V X →
N ∪ {+∞} be a labeling function.

• We consider restrictions of λ to sub-arenas of V X as follows. Let
n ∈ {1, . . . , N}, we denote by λn : V Jn → N ∪ {+∞} the restriction of
λ to V Jn . Similarly we denote by λ≥n (resp. λ>n) the restriction of λ
to V ≥Jn (resp. V >Jn).

• The maximal finite range of λ, denoted by mR(λ), is equal to

mR(λ) = max{c ∈ N | λ(v) = c for some v ∈ V X}

with the convention that mR(λ) = 0 if λ is the constant function +∞.
We also extend this notion to restrictions of λ with the convention that
mR(λ>n) = 0 if Jn is a bottom region.

Notice that in the definition of maximal finite range, we only consider the
finite values of λ (and not the value +∞).

Definition 11.2.2 (Counter Graph). Let λ : V X → N∪{+∞} be a labeling
function. Let K := {0, . . . ,K}∪{+∞} with K = mR(λ). The counter graph
C(λ) for G and λ is equal to C(λ) = (Π, V C , (V C

i )i∈Π, E
C), such that:

• V C = V X ×K|Π|

• (v, (ci)i∈Π) ∈ V C
j if and only if v ∈ V X

j

• ((v, (ci)i∈Π), (v′, (c′i)i∈Π)) ∈ EC if and only if:

– (v, v′) ∈ EX , and

– for every i ∈ Π

c′i =


0 if i ∈ I(v′)

ci − 1 if i /∈ I(v′), v′ /∈ V X
i and ci > 1

min(ci − 1, λ(v′)) if i /∈ I(v′), v′ ∈ V X
i and ci > 1.
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Intuitively, the counter graph is constructed such that once a value λ(v) is
finite for a vertex v ∈ V X

i along a play in X , the corresponding path in C(λ)

keeps track of the induced constraint by (i) decrementing the counter value ci
for the concerned player i by 1 at every step, (ii) updating this counter if a
stronger constraint for player i is encountered by visiting a vertex v′ with a
smaller value λ(v′), and (iii) setting the counter ci to 0 if player i has reached
his target set.

Note that in the counter graph, there may be some vertices with no outgoing
edges. Indeed, consider a vertex (v, (ci)i∈Π) ∈ V C such that cj = 1 for some
player j. By construction of C(λ), the only outgoing edges from (v, (ci)i∈Π)

must link to vertices (v′, (c′i)i∈Π) such that (v, v′) ∈ EX , c′j = 0 and j ∈ I(v′)

(as in Definition 11.2.2 the two other cases require that cj > 1). However, it
may be the case that no successor v′ of v in X is such that j ∈ I(v′).

Note as well that for each vertex v ∈ V X , there exist many different vertices
(v, (ci)i∈Π) in C(λ), one for each counter values profile. However, the intended
goal of the counter graph is to monitor explicitly the constraints accumulated
by each player along a play in X regarding the function λ. Thus, we will only
consider paths in C(λ) that start in vertices (v, (ci)i∈Π) such that the counter
values correspond indeed to the constraint at the beginning of a play in X
regarding λ:

Definition 11.2.3 (Starting vertex in C(λ)). Let v ∈ V X . We distinguish
one vertex vC = (v, (ci)i∈Π) in V C , such that for every i ∈ Π:

ci =


0 if i ∈ I(v)

λ(v) if i /∈ I(v) and v ∈ V X
i

+∞ otherwise.

We call vC the starting vertex associated with v, and denote by SV(λ) the
set of all starting vertices in C(λ).

Example 11.2.4. Recall the extended game (X , x0) of Figure 11.1, and the la-
beling function λ whose values are indicated under each vertex. In Figure 11.2,
we illustrate a part of the counter graph C(λ). In Example 7.4.14, we have
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v0, ∅, (+∞, 4) v4, ∅, (+∞, 3) v0, ∅, (+∞, 2) v4, ∅, (+∞, 1)

v1, ∅, (3, 3) v6, ∅, (2, 2) v7, ∅, (1, 1) v2, Π, (0, 0) v0, Π, (0, 0)

v1, Π, (0, 0)v6, Π, (0, 0)v7, Π, (0, 0)v3, ∅, (2, 2) v0, ∅, (1, 1)

. . . . . .

. . .

. . .

Figure 11.2: Part of the counter graph C(λ) associated with the game of
Figure 4.1

shown that the play

ρ = (v0, ∅)(v1, ∅)(v6, ∅)(v7, ∅)((v2,Π)(v0,Π)(v1,Π)(v6,Π)(v7,Π))ω

was λ-consistent. Let us show that there is a corresponding infinite path π that
starts in (v0, ∅)C = (v0, ∅, (+∞, 4)) in C(λ). Following Definition 11.2.2, we
see that in C(λ), there exists an edge between (v0, ∅, (+∞, 4)) and (v1, ∅, (3, 3))

and that

π = (v0, ∅)C(v1, ∅, (3, 3))(v6, ∅, (2, 2))(v7, ∅, (1, 1))π′ω

with

π′ = (v2,Π, (0, 0))(v0,Π, (0, 0))(v1,Π, (0, 0))(v6,Π, (0, 0))(v7,Π, (0, 0)).

Come back now to the play ρ′ = ((v0, ∅)(v4, ∅))ω described in Example 7.4.14,
which is not λ-consistent. From (v0, ∅)C = (v0, ∅, (+∞, 4)), there is an edge to
(v4, ∅, (+∞, 3)), then to (v0, ∅, (+∞, 2)) and to (v4, ∅, (+∞, 1)). For the latter
vertex, there is no outgoing edge back to (v0, ∅, (+∞, 0)) because 2 /∈ I(v0, ∅).
Therefore there is no infinite path starting in (v0, ∅)C in C(λ) that corresponds
to ρ′.

There exists a correspondence between λ-consistent plays in X and infinite
paths from starting vertices in C(λ) in the following way. On one hand, every
play ρ in X that is not λ-consistent does not appear in the counter graph: the
first constraint regarding λ that is violated along ρ is reflected by a vertex in
C(λ) with a counter value getting to 1 and no outgoing edges. On the other
hand, λ-consistent plays in X have a corresponding infinite path in the counter
graph C(λ). We call valid paths the infinite paths of C(λ). This correspondence
is formalized in the two following lemmas:
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Lemma 11.2.5. Let ρ = ρ0ρ1 . . . be a λ-consistent play in PlaysX(v). Then
there exists an associated infinite path π = π0π1 . . . in C(λ) such that:

• π0 = vC ,

• ρ is the projection of π on V X , that is, πn is of the form (v′, (c′i)i∈Π)

with v′ = ρn, for every n ∈ N.

Lemma 11.2.6. Let vC = (v, (ci)i∈Π) be a starting vertex in SV(λ). Let
π = π0π1 . . . be an infinite path in C(λ) such that π0 = vC . Then there exists
a corresponding play ρ = ρ0ρ1 . . . in X such that:

• ρ is λ-consistent,

• ρ is the projection of π on V X , that is, ρn = v′ with πn = (v′, (c′i)i∈Π),
for every n ∈ N.

Since the edge relation EC in the counter graph respects the edge relation
EX in the extended game, the region decomposition of path in X given in
Lemma 11.1.1 can also be applied to a path in C(λ). We will often use such
path region decompositions in the proofs of this section.

In order to prove the PSPACE membership for the constrained existence
problem, we need to show that the counter graph C(λ∗), with λ∗ the fixpoint
function computed by Algorithm 4, has an exponential size. To this end, as
the size of |C(λ∗)| of C(λ∗) is equal to |V | · 2|Π| · (K + 2)|Π| with K = mR(λ∗)

defined in Definition 11.2.1, it is enough to show an exponential upper bound
on K. We proceed in two steps: First, with the next proposition, given a
labeling function λ and its restriction λ≥` to V ≥`, we exhibit a bound on the
supremum of the cost of λ-consistent plays for each player, in terms of the
maximal finite range mR(λ≥`). Second, we consider the actual sequence of
functions (λk)k∈N defined in Definitions 11.1.3 and 11.1.5, as implemented by
Algorithm 4. With Theorem 11.2.8, we show that mR(λ∗) is bounded by an
exponential in the size of the original game G. The proof is by induction on k
and uses Proposition 11.2.7.
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Proposition 11.2.7 (Bound on finite supremum). Let λ be a labeling func-
tion. Let v ∈ V X such that I(v) = J` with ` ∈ {1, . . . , N}. Let c ∈ N∪{+∞}
be such that sup {Costi(ρ) | ρ ∈ Λ(v)} = c. If c < +∞, then

c ≤ |V |+ 2 ·mR(λ`) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λj).

Moreover, in both cases c = +∞ and c < +∞, there exists a valid path π
in C(λ) starting in vC that is a lasso hgω with the length of hg bounded by
2 · |C(λ)| and such that its corresponding play ρ in X belongs to Λ(v) and
has its cost Costi(ρ) equal to c.

We now come back to the labeling functions (λk)k∈N computed by Algo-
rithm 4. Recall that this algorithm works in a bottom-up manner (see Propo-
sition 11.1.7): it first computes the local fixpoint λk∗N on region V JN , then
the local fixpoint λk

∗
N−1 on V ≥JN−1 , . . . , until finally computing the global

fixpoint λ∗ on V ≥J1 = V X . Recall also that when the algorithm computes
the local fixpoint in the arena X≥Jn , the values of λk(v) may only change in
the region V Jn (Lemma 11.1.8). We are now ready to show an exponential
bound (in the size of G) on the maximal finite ranges mR(λ

k∗`
` ) for each region

XJ` and mR(λ
k∗`
≥`) for each arena X≥J` . With ` = 1, we get that mR(λ∗) is of

exponential size, and thus also the size of the counter graph.

Theorem 11.2.8 (Bound on maximal finite range). For each ` ∈ {1, . . . , N},
we have

mR(λ
k∗`
` ) ≤ O(|V |(|V |+3)·(|Π\J`|+2))

and also:
mR(λ

k∗`
≥`) ≤ O(|V |(|V |+3)·(|Π|+2)).

In particular for the global fixpoint λ∗ we have

mR(λ∗) ≤ O(|V |(|V |+3)·(|Π|+2)).

The next corollary is a direct consequence of Theorem 11.2.8.
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Corollary 11.2.9. The counter graph C(λ∗) has a size |C(λ∗)| = |V | · 2|Π| ·
(mR(λ∗) + 2)|Π| that is exponential in the size of the game G.

We conclude this section with two other corollaries that will be useful in
the next section.

Corollary 11.2.10. For every k ∈ N and region V J`, we have

mR(λk` ) ≤ O
(
|V |(|V |+3)(|Π|+2)

)
and also

mR(λk≥`) ≤ O
(
|V |(|V |+3)(|Π|+2)

)
.

Corollary 11.2.11. Let v ∈ V X with I(v) = J` with ` ∈ {1, . . . N − 1}. Let
k ∈ N. Suppose there exists c ∈ N such that sup {Costi(ρ) | ρ ∈ Λk(v)} = c.
Then, the following holds:

c ≤ O
(
|V |(|V |+3)(|Π|+2)

)
.

11.3 PSPACE-completeness

In this section, we prove Theorem 11.0.1. We first prove that the constrained
existence problem of SPEs in quantitative Reachability games is in PSPACE
and then that it is PSPACE-hard.

11.3.1 PSPACE-membership

The purpose of this section is to prove that determining if, given a reachability
game (G,v0) and two thresholds x, y ∈ (N ∪ {+∞})|Π|, there exists an SPE σ

in this game such that for all i ∈ Π, xi ≤ Costi(〈σ〉v0) ≤ yi can be done in
PSPACE.
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Proposition 11.3.1. The constrained existence problem of SPEs in quanti-
tative Reachability games is in PSPACE.

Let us provide a high level sketch of the proof of our PSPACE procedure
for this constrained existence problem. Thanks to Theorem 11.1.9, solving the
constrained existence problem for a given game (G, v0) reduces in finding a
λ∗-consistent play ρ in (X , x0) satisfying the constraints. By Lemmas 11.2.5
and 11.2.6, the latter problem reduces in finding a valid path π in the counter
graph C(λ∗) that satisfies the constraints. We will see that it suffices to decide
the existence of such a valid path that is a lasso hgω. As C(λ∗) is exponential in
the size of the input G (by Corollary 11.2.9), classical arguments using Savitch’s
Theorem can thus be used to prove the PSPACE membership. Nevertheless,
the detailed proof is more intricate for two reasons. The first reason is that
the counter graph is constructed from the labeling function λ∗. We thus also
have to prove that λ∗ can be computed in PSPACE. The second reason is
that, a priori, although we know that the counter graph is of exponential size,
we do not know explicitly its size. This is problematic when using classical
NPSPACE algorithms that guess, vertex by vertex, some finite path in a graph
of exponential size, where a counter bounded by the size of the graph is needed
to guarantee the termination of the procedure. In order to overcome this, we
also need a PSPACE procedure to obtain the actual size of C(λ∗). Recall that
the size |C(λ∗)| is equal to |V | · 2|Π| · (K + 2)|Π| where K = mR(λ∗). Hence to
compute the size of the counter graph, we have to compute the actual value of
mR(λ∗).

The PSPACE procedure to compute λ∗ and mR(λ∗) works by induction
on k, the steps in the computation of the labeling function λ∗. Moreover, it
exploits the structural evolution of the local fixpoints formalized in Propo-
sition 11.1.7 and Lemma 11.1.8. Indeed recall that these local fixpoints are
computed region by region, from XJN to XJ1 , and that if XJ` is the currently
treated region, then the values of λk+1(v) are computed from λk(v) for all
v ∈ V J` (those values remain unchanged for all v outside of V J`). For the mo-
ment, suppose that we have at our disposal a PSPACE procedure to compute
{λk(v) | v ∈ V J`} and the maximal finite range mR(λk≥`):
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Proposition 11.3.2. Given an initialized reachability game (G, v0), for all
k ∈ N and for all J`, ` ∈ {1, . . . , N}, the set {λk(v) | v ∈ V J`} and the
maximal finite range mR(λk≥`) can be computed in PSPACE.

Let us prove Proposition 11.3.1. The proof of Proposition 11.3.2 will be
given just after.

Proof of Proposition 11.3.1. Let (G, v0) be an initialized reachability game
and let x, y ∈ (N∪{+∞})|Π| be two thresholds. Let (X , x0) be the extended
game of (G, v0), C(λ∗) the counter graph constructed from the labeling func-
tion λ∗ and its maximal finite range mR(λ∗).
We first prove that there exists an SPE in (G, v0) such that its outcome
ρ satisfies the constraints xi ≤ Costi(ρ) ≤ yi for all i ∈ Π, if and only
if, there exists a valid path in C(λ∗) starting from the starting vertex xC0
associated with x0 such that it is a lasso hgω with the length |hg| bounded
by d+ 2 · |C(λ∗)| with

d := max{xi | xi < +∞}

and such that it also satisfies these constraints.
We already know by Theorem 11.1.9 and Lemmas 11.2.5-11.2.6 that the
existence of an SPE outcome ρ in G satisfying the constraints is equivalent
to the existence of a valid path π in C(λ∗) satisfying these constraints. It
remains to show that the latter path can be chosen as a lasso hgω with the
announced length of hg. This lasso is constructed as follows. Consider the
suffix π≥d of π and its region decomposition π≥d[m]π≥d[m + 1] . . . π≥d[n].
For all ` ∈ {m, . . . , n − 1}, we remove all the cycles in section π≥d[`] to get
a simple path π′`, and from the last section π≥d[n], we derive the infinite
path π′n formed of the first vertices of π≥d[n] until a cycle is reached and
then repeated forever. Notice that there is no other cycle in π′mπ′m+1 . . . π

′
n

by the I-monotonicity property (4.1). The required lasso hgω is equal to the
concatenation of the prefix π≤d with the modified suffix π′mπ′m+1 . . . π

′
n. By

construction π′m . . . π′n is itself a lasso h′g′ω with |h′g′| bounded by 2 · |C(λ∗)|
and thus |hg| is bounded by d + 2 · |C(λ∗)|. Moreover, for all i, π visits the
target set of player i if and only if hgω visits this set (maybe earlier if the
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visit is inside π′m . . . π′n). By definition of d, the constraints imposed by xi, yi,
i ∈ Π, are simultaneously satisfied by π and hgω.
Let us now show how to get a PSPACE procedure for the constrained exis-
tence problem. As just explained, we have to guess a lasso π = hgω in C(λ∗)

that starts in xC0 , satisfies the constraints, and such that |hg| is bounded by

L = d+ 2 · |C(λ∗)|.

We cannot guess π entirely and we have to proceed region by region. Sup-
pose that I(x0) = Jm for some m ∈ {1, . . . , N}, and consider the region
decomposition π[m]π[m + 1] . . . π[n] of π, where some sections π[`] may be
empty.
We guess successively the sections π[m], π[m + 1] and so on. To guess π[`]

with ` ∈ {m, . . . , n}, assuming it is not empty, we guess one by one its
vertices that all belong to the same region V J` . To guess such a vertex
(v′, (c′i)i∈Π), we only have to keep its predecessor (v, (ci)i∈Π) in memory and
to know the value λ∗(v′) (in a way to compute each c′i from ci). So, we need
to know {λ∗(v) | v ∈ V J`}. By Proposition 11.3.2, we can compute this set in
PSPACE. Once we move to another region in a way to guess the next section
of π, we can forget this set and compute the new one. We also need to guess
which vertex will be the first vertex of g.
Notice that any vertex of the counter graph can be encoded in polynomial
size memory. Indeed it is composed of a vertex of V , a subset I of Π,
and |Π| counter values that belong to {0, . . . ,mR(λ∗)} ∪ {+∞} (mR(λ∗)

is at most exponential in the input by Theorem 11.2.8). Moreover the set
{λ∗(v) | v ∈ V J`} can also be encoded in polynomial size memory since it is
composed of |V | values that belong to {0, . . . ,mR(λ∗)} ∪ {+∞}.
Recall that the length |hg| for the guessed lasso π = hgω cannot exceed
constant L. We thus have to compute and store L. The computation in
PSPACE of L requires the computation of |C(λ∗)|, and thus in particular
the computation of mR(λ∗). This is possible thanks to Proposition 11.3.2.
And it follows by Corollary 11.2.9 that L can be stored in polynomial size
memory. In addition to L, during the guessing of π, we also have a counter
CL to count the current length of π, and for each player i ∈ Π a counter Ci
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keeping track of the current cost of player i along π. As CL ≤ L and Ci ≤ L
for all i, all these counters can be also encoded in polynomial size memory.
Finally, we stop guessing π when either its length exceeds L or when its
currently guessed vertex is equal to the first vertex of cycle g for the second
time. In the latter case, we check whether π satisfies the constraints, that
is, xi ≤ Ci ≤ yi for all i. This completes the proof that the given procedure
works in PSPACE.

Let us now prove Proposition 11.3.2. We proceed by induction on the
steps in the computation of the labeling function λ∗ and, once a step k is
fixed, we proceed region by region, beginning with the bottom region JN and
then proceeding bottom-up by following the total order J1 < . . . < JN . Let
XJ` be a region, we aim at proving that the set {λk+1(v) | v ∈ V J`} and the
value mR(λk+1

≥` ) are both computable in PSPACE (from the previous step k).
To this aim consider Proposition 11.1.7 and especially Lemma 11.1.8. Let k∗`
(resp. k∗`+1) be the step where the local fixpoint is reached for region XJ` (resp.
XJ`+1). Recall that k∗`+1 < k∗` and that when k ≤ k∗`+1 (resp. k ≥ k∗` ), we have
that λk+1(v) = λk(v), for each v ∈ V J` . The tricky case in when k∗`+1 < k < k∗` .
In the latter case, the computation of λk+1(v) from λk(v), for all v ∈ V Jn , relies
on the computation of the maximal cost, for the player who owns vertex v,
of the plays of Λk(v′), with v′ ∈ Succ(v) (see Definition 11.1.5). This will be
possible with the same approach as in the proof of Proposition 11.3.1: to guess
a lasso in the counter graph C(λk) that realizes this maximal cost.

Proof of Proposition 11.3.2. We proceed by induction on k ∈ N.

Base case. For k = 0 we have to prove that for all J`, ` ∈ {1, . . . , N},
the set {λ0(v) | v ∈ V J`} and the value mR(λ0

≥`) can be both computed in
PSPACE. Given J`, thanks to Definition 11.1.3, we have that either λ0(v) = 0

if v ∈ V X
i and i ∈ I(v) = J` or λ0(v) = +∞ otherwise. Thus mR(λ0

≥l) = 0.
So, we clearly have a PSPACE procedure in this case.

General case. Now, assume that for all n, n ∈ {0, . . . , k}, and for all
J`, ` ∈ {1, . . . , N}, the set {λn(v) | v ∈ V J`} and the value mR(λn≥`) can be
computed in PSPACE. Let us prove that it remains true for n = k + 1, that
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is:

{λk+1(v) | v ∈ V J`} and mR(λk+1
≥` ) can be computed in PSPACE (11.3)

We proceed by induction on the region XJ` (we thus use a double induction,
one on the computation steps and the other one on the regions).

If J` = JN , then it is a bottom region. Then for all v ∈ V JN , λk+1(v) = λ0(v)

and so {λk+1(v) | v ∈ V JN } = {λ0(v) | v ∈ V JN } (local fixpoint k∗N = 0 in
Proposition 11.1.7). By induction hypothesis we know that this latter set can
be computed in PSPACE. Moreover, we have that mR(λk+1

≥N ) = mR(λk+1
N ) =

0. Therefore Assertion (11.3) holds.

Now, let J` be a region different from JN . If it is a bottom region, we have
{λk+1(v) | v ∈ V J`} = {λ0(v) | v ∈ V J`} as for JN . Moreover mR(λk+1

` ) =

mR(λ0
` ) = 0 and then mR(λk+1

≥` ) = max{mR(λk+1
` ),mR(λk+1

≥`+1)} =

mR(λk+1
≥`+1). Thus by induction hypothesis, {λk+1(v) | v ∈ V J`} and

mR(λk+1
≥` ) can be computed in PSPACE and Assertion (11.3) holds.

Let us now suppose that J` is not a bottom region. We first recall Propo-
sition 11.1.7 that states that Algorithm 4 reaches a local fixpoint for each
region. Let k∗` (resp. k

∗
`+1), the step after which the region XJ` (resp. XJ`+1)

has reached its local fixpoint. Recall that k∗`+1 < k∗` . Let us now consider
the three cases of Lemma 11.1.8.

• If k ≤ k∗`+1, then by Lemma 11.1.8, the region XJ`+1 has not reached
its local fixpoint yet. So, it implies that the labeling of the vertices
of V J` has not change since initialization. More formally, for all v ∈
V J` , λk+1(v) = λ0(v). Thus mR(λk+1

` ) = 0 and then mR(λk+1
≥` ) =

mR(λk+1
≥`+1). So by induction hypothesis, both {λk+1(v) | v ∈ V J`} and

mR(λk+1
≥` ) can be computed in PSPACE showing (11.3).

• If k > k∗` , then by Lemma 11.1.8, the local fixpoint of region XJ`

is reached, that is, {λk+1(v) | v ∈ V J`} = {λk(v) | v ∈ V J`} and
mR(λk+1

≥` ) = mR(λk≥`) and (11.3) holds by induction hypothesis.

(Notice the little difference with the inequalities given in Lemma 11.1.8:
we here consider case k > k∗` instead of case k ≥ k∗` of Lemma 11.1.8.
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Indeed when k = k∗` , we still need to compute λk+1 to realize that the
fixpoint is effectively reached. This is thus postponed in the next case.)

• It remains to consider the case k∗`+1 < k ≤ k∗` , which is the most
difficult one. In this case, either the values of λk(v) and λk+1(v) differ
for some v ∈ V J` , or k = k∗` and we realize that the local fixpoint is
effectively reached on XJ` .

Let us first show that the set {λk+1(v) | v ∈ V J`} can be computed
in PSPACE. Given v ∈ V J` , if v ∈ V X

i , then by Definition 11.1.5,
λk+1(v) is either equal to 0 (if i ∈ J`) or it is computed from the values
sup{Costi(ρ) | ρ ∈ Λk(v′)}, v′ ∈ Succ(v). Thus we have to show that
each value sup{Costi(ρ) | ρ ∈ Λk(v′)} can be computed in PSPACE.

To this aim, we use Proposition 11.2.7 stating that if

sup{Costi(ρ) | ρ ∈ Λk(v′)} = c,

then there exists a valid path π = hgω in C(λk) starting in v′C that is
a lasso with |hg| bounded by 2 · |C(λk)| and such that its corresponding
play ρ in X belongs to Λk(v) and has its cost Costi(ρ) equal to c.
Notice that we can restrict λk to λk≥` since any path beginning in V J`

only visits vertices of V ≥J` . We thus work in the counter graph C(λk≥`)

restricted to V ≥` (see Remark B.1.5). We will guess such a lasso π as
done in the proof of Proposition 11.3.1. More precisely, as the value of
c is unknown, we will first test in PSPACE whether there exists such a
lasso π with cost c = +∞. If yes, we are done, otherwise by considering
increasing values d ∈ N, we will test in PSPACE whether there exists
a lasso π with cost ≥ d. The last value d for which the answer is yes is
the required cost c.

– Let us detail the case c = +∞. Similarly to the proof of Proposi-
tion 11.3.1, we guess the lasso π = hgω by on one hand guessing
the first vertex of its cycle g and on the other hand guessing the
sections π[`], π[`+ 1], . . . of π, one by one, from the starting ver-
tex v′C ∈ V J` . Given m ≥ `, section π[m] is guessed vertex by
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vertex, where each vertex belongs to V Jm . By induction hypoth-
esis, we can compute the set {λk(u) | u ∈ V Jm} and the value
mR(λk≥m) in PSPACE, and by Corollary 11.2.10 the previous set
and each vertex of the counter graph C(λk≥`) can be encoded in
polynomial size memory. Once π[m] is guessed we can forget the
set {λk(u) | u ∈ V Jm} and guess the next section of π.

Additionally, to check that the length of hg does not exceed the
constant L = 2 · |C(λk≥`)|, we have to compute mR(λk≥`) that can
be done in PSPACE by induction hypothesis. Thus we can also
compute L in PSPACE and by Corollary 11.2.10 we can encode
it in polynomial size memory. We also store a counter CL ≤ L

(which is initialized to 0 and incremented by 1 each time we guess
a new vertex of π) and a boolean Ci (which is equal to 0 as long
as player i does not visit his target set and is equal to 1 after this
visit).

We stop if either if CL > L or if we have found the lasso. In the
latter case we check whether Ci = 0 or not.

– Let us now proceed to the case c < +∞. We check whether there
exists a lasso π = hgω with |hg| bounded by L = 2 · |C(λk≥`)| with
cost (for player i) ≥ d, for values d = 0, d = 1, . . ., until the answer
is no. The last value d for which the answer is yes is equal to c.

We know by Corollary 11.2.11, that the size of c cannot exceed an
exponential in the size of the input. Thus each tested value d can
be encoded in polynomial size memory.

To check in PSPACE the existence of such a lasso with length of
hg bounded by L with cost ≥ d, we proceed exactly as for the case
c = +∞ except that instead of the boolean Ci we keep a counter
Ci ≤ L that keeps track of the cost of player i for the lasso that
we are guessing.

Notice that the depth of the recursion of the procedure is at most |Π|
by the I-monotonicity property (4.1) (any path crosses at most |Π| re-
gions). And at each recursion level, only a polynomial size information
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is stored. This concludes the proof that the set {λk+1(v) | v ∈ V J`}
can be computed in PSPACE.

To conclude the case k∗`+1 < k ≤ k∗` , it remains to prove that the
value mR(λk+1

≥` ) can also be computed in PSPACE. Clearly we can
compute mR(λk+1

` ) in PSPACE as we now have {λk+1(v) | v ∈ V J`}
in memory and we can compute mR(λk+1

≥`+1) by induction hypothesis.
Notice that both values can be encoded in polynomial memory size by
Corollary 11.2.10. So, as mR(λk+1

≥` ) = max{mR(λk+1
` ),mR(λk+1

≥`+1)},
we can compute mR(λk+1

≥` ) in PSPACE and Assertion (11.3) is proved.

11.3.2 PSPACE-hardness

We now prove that the constrained existence problem is PSPACE-hard for
quantitative Reachability games.

Proposition 11.3.3. The constrained existence problem of SPEs in multi-
player quantitative Reachability games is PSPACE-hard.

The proof of this proposition is based on a polynomial reduction from
the QBF problem which is PSPACE-complete. It is close to the proof given
in Section 10.2 for the PSPACE-hardness of the constrained existence problem
of weak SPEs in qualitative Reachability games. The main difference is to
manipulate costs instead of considering qualitative reachability.

The QBF problem is to decide whether a fully quantified Boolean for-
mula ψ is true. The formula ψ can be assumed to be in prenex normal form
Q1x1Q2x2 . . . Qmxm φ(X) such that the quantifiers are alternating existential
and universal quantifiers (Q1 = ∃, Q2 = ∀, Q3 = ∃, . . .), X = {x1, x2, . . . , xm}
is the set of quantified variables, and φ(X) = C1 ∧ . . . ∧Cn is an unquantified
Boolean formula over X equal to the conjunction of the clauses C1, . . . , Cn.

Such a formula ψ is true if there exists a value of x1 such that for all
values of x2, there exists a value of x3 . . ., such that the resulting valua-
tion ν of all variables of X evaluates φ(X) to true. Formally, for each odd
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(resp. even) k, 1 ≤ k ≤ m, let us denote by fk : {0, 1}k−1 → {0, 1}
(resp. gk : {0, 1}k−1 → {0, 1}) a valuation of variable xk given a valuation
of previous variables x1, . . . , xk−1

5. Given theses sequences f = f1, f3, . . . and
g = g2, g4, . . ., let us denote by ν = ν(f,g) the valuation of all variables of X
such that ν(x1) = f1, ν(x2) = g2(ν(x1)), ν(x3) = f3(ν(x1)ν(x2)), . . .. Then

ψ = Q1x1Q2x2 . . . Qmxm φ(X) is true
if and only if

there exist f = f1, f3, . . . such that for all g = g2, g4, . . ., the valuation νf,g
evaluates φ(X) to true.

Let us first detail a polynomial reduction from the QBF problem to the
constraint problem for quantitative reachability games.

Let ψ = Q1x1Q2x2 . . . Qmxm φ(X) with φ(X) = C1 ∧ . . . ∧ Cn be a fully
quantified Boolean formula in prenex normal form. We build the follow-
ing quantitative Reachability game Gψ = (A, (Costi)i∈Π, (Fi)i∈Π) with A =

(Π, V, (Vi)i∈Π, E) (see Figure 11.3):

• the set V of vertices:

– for each variable xk ∈ X under quantifier Qk, there exist vertices
xk, ¬xk and qk;

– for each clause Ck, there exist vertices ck and tk;

– there exists an additional vertex tn+1;

• the set E of edges:

– from each vertex qk there exist an edge to xk and an edge to ¬xk;

– from each vertex xk and ¬xk, there exists an edge to qk+1, except
for k = m where this edge is to c1;

– from each vertex ck, there exist an edge to tk and an edge to ck+1,
except for k = n where there exist an edge to tn and an edge to
tn+1;

– there exists a loop on each tk;
5Notice that f1 : ∅ → {0, 1}.
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• the set Π of n+ 2 players:

– each player i, 1 ≤ i ≤ n, owns vertex ci;

– player n+ 1 (resp. n+ 2) is the player who owns the vertices qi for
each existential (resp. universal) quantifier Qi;

– as all other vertices have only one outgoing edge, it does not matter
which player owns them;

• each function Costi is associated with the target set Fi defined as follows:

– for all i, 1 ≤ i ≤ n, Fi = {` ∈ V | ` is a literal of clause Ci} ∪ {ti};

– Fn+1 = {tn+1};

– Fn+2 = {t1, . . . , tn}.

q1 q2 q3 . . . qm c1 . . . cn tn+1

x1

¬x1

x2

¬x2

xm

¬xm

t1 tn

Figure 11.3: Reduction from the formula ψ to the quantitative Reachability
game Gψ

Remark 11.3.4. (1) Notice that a sequence f of functions fk : {0, 1}k−1 →
{0, 1}, with k odd, 1 ≤ k ≤ m, as presented above, can be translated into a
strategy σn+1 of player n + 1 in the initialized game (Gψ, q1), and conversely.
Similarly, a sequence g of functions gk : {0, 1}k−1 → {0, 1}, with k even, 1 ≤
k ≤ m is nothing else than a strategy σn+2 of player n+2. (2) Notice also that if
ρ is a play in (Gψ, q1), then Costn+1(ρ) < +∞ if and only if Costn+2(ρ) = +∞.
Moreover, suppose that ρ visits tn+1, then for all i, 1 ≤ i ≤ n, Costi(ρ) ≤ 2 ·m
if and only if for all i, 1 ≤ i ≤ n, ρ visits a vertex that is a literal of Ci, and
that is the case if and only if there is a valuation of all variables of X that
evaluates φ(X) to true.
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Proof of Proposition 11.3.3. Consider the game Gψ and the bound y = (2 ·
m, . . . , 2 ·m, 2 ·m+ n,+∞). Both can be constructed from ψ in polynomial
time. Let us now show that ψ is true if and only if there exists an SPE in
(Gψ, q1) with cost ≤ y.

(⇒) Suppose that ψ is true. Then there exists a sequence f of functions
fk : {0, 1}k−1 → {0, 1}, with k odd, 1 ≤ k ≤ m, such that for all sequences g
of functions gk : {0, 1}k−1 → {0, 1}, with k even, 1 ≤ k ≤ m, the valuation
νf,g evaluates φ(X) to true. We define a strategy profile σ as follows:

• for player n+ 1, his strategy σn+1 is the strategy corresponding to the
sequence f (by Remark 11.3.4);

• for player n + 2, his strategy is an arbitrary strategy σn+2; we denote
by g the corresponding sequence gk : {0, 1}k−1 → {0, 1}, with k even,
1 ≤ k ≤ m (by Remark 11.3.4);

• for each player i, 1 ≤ i ≤ n,

– if hv ∈ Histi(q1) with v = ci, is consistent with σn+1, then
σi(hv) = ci+1 if i 6= n and tn+1 otherwise

– else σi(hv) = ti.

Let us first prove that the play ρ = 〈σ〉q1 has a cost ≤ y = (2 ·m, . . . , 2 ·m, 2 ·
m+n,+∞). By hypothesis, the valuation νf,g evaluates φ(X) to true, that is,
it evaluates all clauses Ci to true. Hence by Remark 11.3.4, ρ visits a vertex
of Fi for all i, 1 ≤ i ≤ n, and by definition of σ, ρ eventually loops on tn+1.
It follows that Costi(ρ) ≤ 2 ·m for all i, 1 ≤ i ≤ n, Costn+1(ρ) ≤ 2 ·m+ n,
and Costn+2(ρ) = +∞. Hence Cost(ρ) ≤ y.
Let us now prove that σ is an SPE, that is, for each history hv ∈ Hist(q1),
there is no one-shot deviating strategy in the subgame (Gψ�h, v) that is prof-
itable to the player who owns vertex v (by Corollary 2.4.23). This is clearly
true for all v = ti, 1 ≤ i ≤ n + 1, since ti has only one outgoing edge. For
the other vertices v, we study two cases:

• hv is consistent with σn+1: Notice that hv is maybe not consistent with
σn+2, but with another arbitrary strategy σ′n+2. Let g′ be the sequence
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corresponding to σ′n+2 by Remark 11.3.4. By hypothesis, the valuation
νf,g′ evaluates φ(X) to true. Hence as explained previously for 〈σ〉q1 ,
the cost of play ρ = h〈σ�h〉v is such that Costi(ρ) ≤ 2 · m for all i,
1 ≤ i ≤ n, Costn+1(ρ) ≤ 2 ·m+n, and Costn+2(ρ) = +∞. If v belongs
to player i, 1 ≤ i ≤ n, this player has no incentive to deviate since he
has already visited his target set along h and thus cannot decrease his
cost. If v belongs to player n + 1, a one-shot deviation will lead to a
play eventually looping on t1 by definition of σ, thus leading to a cost
+∞ which is not profitable for player n + 1. Finally if v belongs to
player n+2, a one-shot deviation will not decrease his cost by definition
of σ (σn+2 is arbitrary).

• hv is not consistent with σn+1: Suppose that v = ck. Then by definition
of σ, the play h〈σ�h〉v eventually loops on tk leading to a cost ≤ 2·m+k

for player k. In fact, if player k has already seen his target set along
hv, using a one-shot deviation in the subgame (Gψ�h, v) leads to the
same cost for him. Otherwise, it leads to a cost equal to +∞: indeed,
deviating here means going to the state ck+1 (or tn+1 if k = n, which
leads to a cost of +∞ for player n), and since hv is not consistent with
σn+1, by definition of σk+1, player k+ 1 will choose to go to tk+1. This
player has thus no incentive to deviate.

Suppose that v = qk. Then by definition of σ, the play ρ = h〈σ�h〉v
eventually loops on t1. It follows that Costn+1(ρ) = +∞ and
Costn+2(ρ) = 2 · m + 1. Due to the structure of the game graph,
2 ·m + 1 is the smallest cost that player n + 2 is able to obtain. So if
qk ∈ Vn+2, player n+ 2 has no incentive to deviate. And if qk ∈ Vn+1,
player n+1 could try to use a one-shot deviating strategy, however the
resulting play still eventually loops on t1.

This proves that σ is an SPE and we already showed that its cost was bounded
by y.

(⇐) Suppose that there exists an SPE σ in (Gψ, q1) with outcome ρ such
that Cost(ρ) ≤ y. In particular Costn+1(ρ) < +∞. By Remark 11.3.4, it
follows that Costn+2(ρ) = +∞. We have to prove that ψ is true. To this end,
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consider the sequence f of functions fk : {0, 1}k−1 → {0, 1}, with k odd, 1 ≤
k ≤ m, that corresponds to strategy σn+1 of player n+ 1 by Remark 11.3.4.
Let us show that for all sequences g of functions gk : {0, 1}k−1 → {0, 1}, with
k even, 1 ≤ k ≤ m, the valuation νf,g evaluates φ(X) to true.
By contradiction assume that it is not the case for some sequence g′ and
consider the related strategy σ′n+2 of player n+ 2 by Remark 11.3.4. Notice
that σ′n+2 is a finitely deviating strategy. Let us consider the outcome ρ′

of the strategy profile (σ′n+2, σ−(n+2)) from q1. As Costn+2(ρ) = +∞, we
must have Costn+2(ρ′) = +∞, otherwise σ′n+2 is a profitable deviation for
player n + 2 whereas σ is an SPE. It follows that Costn+1(ρ′) < +∞ by
Remark 11.3.4, that is, ρ′ eventually loops on tn+1.
Now recall that the valuation νf,g′ evaluates φ(X) to false, which means that
it evaluates some clause Ck of φ(X) to false. Consider the history hck < ρ′.
As strategy σ′n+2 only acts on the left part of the underlying graph of Gψ,
we have ρ′ = 〈σ′n+2, σ−(n+2)〉q1 = h〈σ�h〉ck . In the subgame (Gψ�h, ck), the
outcome of σ�h gives a cost of +∞ to player k because ρ′ = h〈σ�h〉ck does not
visit tk and νf,g′ evaluates Ck to false. In this subgame, player k has thus a
profitable one-shot deviation that consists to move to tk. It follows that σ is
not an SPE which is impossible. Then ψ is true.



CHAPTER 12

OTHER RELEVANT EQUILIBRIA IN REACHABILITY
GAMES

In this chapter, based on [BBGT19], we focus on mutiplayer Reachability
games: qualitative or quantitative ones. In those particular settings, our pur-
pose was to identify what is a relevant equilibrium. In the previous chapters,
we have already started to answer this question by considering the constrained
existence problem of SPEs in multiplayer qualitative and quantitative Reach-
ability games (Chapters 10 - 11) that we proved PSPACE-complete in both
cases. In this chapter, our aim is to pursue the study of relevant equilibria in
quantitative and qualitative Reachability games by considering other kinds of
relevant equilibria and the complexity of their related decision problems.

With the constrained existence problem, we impose both a lower and an
upper bound on costs of equilibria. It is much more natural to only impose
upper bounds and to try to obtain an equilibrium with the smallest possible
costs. This is the reason why, we consider a variant of the constrained existence
problem: the upper threshold decision problem (Problem 3).

The constrained existence problem and the upper threshold problem con-
sider the players’ costs purely individually. One may also aim at finding an
equilibrium such that the social welfare of the players is optimized. That is (i)
as many players as possible reach their target sets; (ii) the sum of the costs

215
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of those players is minimized. We consider the social welfare decision problem
(Problem 4).

Finally, when one consider the set of cost profiles which are realizable in a
game, i.e., there exists a play with this cost profile, some of them are Pareto
optimal. Thus we want to decide if there exists an equilibrium such that its
cost profile is pareto optimal in the set of all realizable cost profiles. We call
this decision problem the Pareto optimal decision problem (Problem 5).

When considering equilibria synthesis, those strategies have to be imple-
mented. Thus knowing the memory requirements of such equilibria and ob-
taining finite-memory ones may be crucial. This is the reason why, in addition
to the study of the complexity classes, in case of a positive answer to any of the
three decision problems, we prove that finite-memory strategies are sufficient.

Our results gathered with previous works are summarized in Table 12.1 for
complexity results and in Table 12.2 for memory results.

Table 12.1: Complexity classes for Problems 3-5.

Complexity
Qualitative Reach. Quantitative Reach.

NE SPE NE SPE

Prob. 3 NP-c [CFGR16, Umm05] PSPACE-c [Chap.10] NP-c PSPACE-c [Chap.11]
Prob. 4 NP-c PSPACE-c NP-c PSPACE-c
Prob. 5 NP-h/ΣP

2 PSPACE-c NP-h/ΣP
2 PSPACE-c

Table 12.2: Memory results for Problems 3-5.

Memory
Qualitative Reach. Quantitative Reach.

NE SPE NE SPE

Prob. 3 Polynomial [CFGR16] Exponential [Chap.10] Polynomial Exponential
Prob. 4 Polynomial Exponential Polynomial Exponential
Prob. 5 Polynomial Exponential Polynomial Exponential

In this chapter we mainly focus on the results for multiplayer quantitative
Reachability games (Section 12.1 to Section 12.3) and then briefly explain
results for qualitative Reachability games (Section 12.4). More precisely, in
Section 12.1, we explain the problems of our interest in the quantitative setting.
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In Section 12.2, we show that for particular families of Reachability games and
requirements, there is no need to solve the related decision problems because
they always have a positive answer in this case. In Section 12.3, we state
our complexity and memory results in the quantitative setting and provide
the material necessary to prove them. In Section 12.4, we briefly discuss the
qualitative setting.

12.1 Studied problems

In this section, we define the decision problems of our interest in the quantita-
tive setting. Let us first recall the concepts of social welfare and Pareto opti-
mality. Let (G, v0) be an initialized multiplayer quantitative Reachability game
with G = (A, (Costi)i∈Π, (Fi)i∈Π). Given ρ = ρ0ρ1 . . . ∈ Plays(v0), let us recall
that we denote by Visit(ρ) the set of players that visit their target set along ρ,
i.e., Visit(ρ) = {i ∈ Π | there exists n ∈ N st. ρn ∈ Fi}.1 The social welfare of
ρ, denoted by SW(ρ), is the pair (|Visit(ρ)|,

∑
i∈Visit(ρ) Costi(ρ)) if Visit(ρ) 6= ∅

and the pair (0,+∞) otherwise. Note that it takes into account both the num-
ber of players who visit their target set and their accumulated cost to reach
those sets. Finally, let P = {(Costi(ρ))i∈Π | ρ ∈ Plays(v0)} ⊆ (N ∪ {+∞})|Π|.
A cost profile p ∈ P is Pareto optimal in Plays(v0) if it is minimal in P with
respect to the componentwise ordering ≤ on P .2

Let us now state the studied decision problems. The first two problems are
classical: they ask whether there exists a solution (NE or SPE) σ satisfying
certain requirements that impose bounds on either (Costi(〈σ〉v0))i∈Π or on
SW(〈σ〉v0).

The most natural requirements are to impose upper bounds on the costs
that the players have to pay and no lower bounds.

Problem 3 (Upper threshold decision problem). Given an initialized mul-
tiplayer quantitative Reachability game (G, v0), given a threshold y ∈
(N ∪ {+∞})|Π|, decide whether there exists a solution σ such that

1We can easily adapt this definition to histories.
2For convenience, we prefer to say that p is Pareto optimal in Plays(v0) rather than in P .
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(Costi(〈σ〉v0))i∈Π ≤ y.

Let us recall that one might also be interested in imposing an interval [xi, yi]

in which the cost paid by Player i must lie and that we have already solved
this latter problem for SPEs in quantitative Reachability games (Chapter 11).
In fact, the complexity class of the upper threshold decision problem is the
same, as claimed in the following theorem.

Theorem 12.1.1. For SPEs, Problem 3 with upper (and lower) bounds is
PSPACE-complete.

In the second problem, constraints are imposed on the social welfare, with
the aim to maximize it. We use the lexicographic ordering on N× (N∪{+∞})
such that (k, c) � (k′, c′) if and only if (i) k > k′ or (ii) k = k′ and c ≤ c′.

Problem 4 (Social welfare decision problem). Given an initialized mul-
tiplayer quantitative Reachability game (G, v0), given two thresholds k ∈
{0, . . . , |Π|} and c ∈ N ∪ {+∞}, decide whether there exists a solution σ

such that SW(〈σ〉v0) � (k, c).

Notice that with the lexicographic ordering, we want to first maximize
the number of players who visit their target set, and then to minimize the
accumulated cost to reach those sets. Let us now state the last studied problem.

Problem 5 (Pareto optimal decision problem). Given an initialized mul-
tiplayer quantitative Reachability game (G, v0) decide whether there ex-
ists a solution σ in (G, v0) such that (Costi(〈σ〉v0))i∈Π is Pareto optimal
in Plays(v0).

Remark 12.1.2. Problems 3 and 4 impose constraints with non-strict inequal-
ities. We could also impose strict inequalities or even a mix of strict and
non-strict inequalities. The results of this chapter can be easily adapted to
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v0: 3v1: +∞ v2: 1

v3: 0

v4: 0
3 2

Figure 12.1: A two-player quantitative Reachability game with F1 = {v3, v4}
and F2 = {v1, v4}.

those variants.

We conclude this section with an illustrative example.

Example 12.1.3. Consider the quantitative Reachability game (G, v0) of Fig-
ure 12.1. We have two players such that the vertices of Player 1 (resp. Player 2)
are the rounded (resp. rectangular) vertices. For the moment, the reader should
not consider the value indicated on the right of the vertices’ labeling. Moreover
F1 = {v3, v4} and F2 = {v1, v4}. In this figure, an edge (v, v′) labeled by x
should be understood as a path from v to v′ with length x. Observe that F1

and F2 are both reachable from the initial vertex v0. Moreover the two Pareto
optimal cost profiles are (3, 3) and (2, 6): take a play with prefix v0v2v4 in the
first case, and a play with prefix v0v2v3v0v1 in the second case.

For this example, we claim that there is no NE (and thus no SPE) such
that its cost profile is Pareto optimal (see Problem 5). Assume the contrary
and suppose that there exists an NE σ such that its outcome ρ has cost profile
(3, 3), meaning that ρ begins with v0v2v4. Then Player 1 has a profitable
deviation such that after history v0v2 he goes to v3 instead of v4 in a way to
pay a cost of 2 instead of 3, which is a contradiction. Similarly assume that
there exists an NE σ such that its outcome ρ has cost profile (2, 6), meaning
that ρ begins with v0v2v3v0v1. Then Player 2 has a profitable deviation such
that after history v0 he goes to v1 instead of v2, again a contradiction. So
there is no NE σ in (G, v0) such that (Costi(〈σ〉v0))i∈Π is Pareto optimal in
Plays(v0).

The previous discussion shows that there is no NE σ such that (0, 0) =

x ≤ (Costi(〈σ〉v0))i∈Π ≤ y = (3, 3) (see Problem 3). This is no longer true
with y = (6, 3). Indeed, one can construct an NE τ whose outcome has prefix
v0v1v0v2v3 and cost profile (6, 3). This also shows that there exists an NE σ
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(the same τ as before) that satisfies SW(〈σ〉v0) � (k, c) = (2, 9) (with τ both
players visit their target set and their accumulated cost to reach it equals 9).

12.2 Existence problems

In this section, we show that for particular families of Reachability games and
requirements, there is no need to solve the related decision problems because
they always have a positive answer in this case.

We begin with the family constituted by all Reachability games with a
strongly connected arena. The next theorem then states that there always
exists a solution that visits all non-empty target sets.

Theorem 12.2.1. Let (G, v0) be an initialized multiplayer quantitative
Reachability game such that its arena A is strongly connected. There ex-
ists an SPE σ (and thus an NE) such that its outcome 〈σ〉v0 visits all target
sets Fi, i ∈ Π, that are non-empty.

Let us comment on this result. For this family of games, the answer to
Problem 3 is always positive for particular thresholds. In case of quantitative
Reachability, take strict constraints < +∞ if Fi 6= ∅ and non-strict constraints
≤ +∞ otherwise. We will see later that the strict constraints < +∞ can be
replaced by the non-strict constraints ≤ |V | · |Π| (see Theorem 12.3.2). We will
also see that, in this setting, the answer to Problem 4 is also always positive for
thresholds k = |{i | Fi 6= ∅}| and c = |Π|2 · |V | (see Theorem 12.3.2). In order
to ease the reading, we relegate the proof of Theorem 12.2.1 to Appendix B.2.1.

In the statement of Theorem 12.2.1, as the arena is strongly connected,
Fi is non-empty if and only if Fi is reachable from v0. Also notice that the
hypothesis that the arena is strongly connected is necessary. Indeed, it is easy
to build an example with two players (Player 1 and Player 2) such that from v0

it is not possible to reach both F1 and F2. This is illustrated in Example 12.2.2.

Example 12.2.2. Consider the initialized quantitative Reachability game
(G, v0) of Figure 12.2. There are two players, Player 1 who owns round ver-
tices and Player 2 who owns square vertices, and F1 = {v1}, F2 = {v2}.
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Clearly there is a unique NE σ = (σ1, σ2) in (G, v0) such that σ1(v0) = v1 and
σ2(v1) = v1, σ2(v2) = v2. Its outcome only visits F1 (and not F2).

v0v1 v2

Figure 12.2: A two-player quantitative Reachability game with F1 = {v1} and
F2 = {v2} where one target set is not reached in equilibrium.

We now turn to the second result of this section. The next theorem states
that even with only two players there exists an initialized multiplayer quanti-
tative Reachability game that has no NE with a cost profile which is Pareto
optimal. To prove this result, we only have to come back to the quantitative
Reachability game of Figure 12.1. We explained in Example 12.1.3 that there
is no NE in this game such that its cost profile is Pareto optimal.

Theorem 12.2.3. There exists an initialized multiplayer quantitative Reach-
ability game with |Π| = 2 that has no NE with a cost profile which is Pareto
optimal in Plays(v0).

12.3 Solving decision problems

In this section, we present our main results concerning the three decision prob-
lems defined in Section 12.1. In Theorem 12.3.1 we provide our complexity
results and in Theorem 12.3.2 the memory requirements for the equilibria.

Theorem 12.3.1. Let (G, v0) be a multiplayer quantitative Reachability
game.

• For NEs: Problem 3 and Problem 4 are NP-complete while Problem 5
is NP-hard and belongs to ΣP

2 .

• For SPEs: Problems 3, 4 and 5 are PSPACE-complete.
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Theorem 12.3.2. Let (G, v0) be a multiplayer quantitative Reachability
game.

• For NEs: for each decision problem, if the answer is positive, then there
exists a strategy profile σ with memory in O(|Π| · |V |) which satisfies
the conditions.

• For SPEs: for each decision problem, if the answer is positive,
then there exists a strategy profile σ with memory in O(|Π| · 2|Π| ·
|V |(|Π|+2)·(|V |+3)+1) which satisfies the conditions.

Moreover, for both NEs and SPEs:

• for Problem 3 and Problem 5, σ is such that: if i ∈ Visit(〈σ〉v0), then
Costi(〈σ〉v0) ≤ |Π| · |V |;

• for Problem 4, if Visit(〈σ〉v0) 6= ∅, then
∑

i∈Visit(〈σ〉v0 ) Costi(〈σ〉v0) ≤
|Π|2 · |V |.

Notice that no assumption is made on the arena of the game. Even if we
provide complexity lower bounds in Theorem 12.3.1, the main part is to give
the upper bounds. Roughly speaking the decision algorithms work as follows:
they guess a path and check that it is the outcome of an equilibrium satisfying
the relevant property (such as Pareto optimality). In order to verify that
a path is an equilibrium outcome, we rely on the outcome characterizations
of equilibria, presented in Section 6.2 for NEs (resp. Section 7.4.3 for SPEs).
These characterizations rely themselves on the notion of Visitλ-consistent play
(resp.λ−consistent play). As the guessed path should be finitely representable,
we show that it is sufficient to consider Visitλ-consistent lassoes (resp. λ-
consistent lassoes), in Section 12.3.1. In order to make the presentation of the
results uniform and since the notions of λ-consistent play and Visitλ-consistent
plays are equivalent (Proposition 7.4.15) in the associated extended game of
quantitative Reachability game, we enunciate our results using the Visitλ-
consistency both for NEs and SPEs. We then expose in Section 12.3.2 the
philosophy of the algorithms providing the upper bounds on the complexity of
the three problems. Finally, all the technical details and proofs are relegated
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to Appendix B.2.

12.3.1 Sufficiency of lassoes

In this section, we provide technical results which given a Visitλ-consistent
play produce an associated Visitλ-consistent lasso. In the rest of this docu-
ment, we show that working with these lassoes is sufficient for the algorithms.

The associated lassoes are built by eliminating some unnecessary cycles
and then identifying a prefix h` such that ` can be repeated infinitely often.
An unnecessary cycle is a cycle inside of which no new player visits his target
set. More formally, let ρ = ρ0ρ1 . . . ρk . . . ρk+` . . . be a play in G, if ρk = ρk+`

and Visit(ρ0 . . . ρk) = Visit(ρ0 . . . ρk+`) then the cycle ρk . . . ρk+` is called an
unnecessary cycle.

We call:

• (P1) the procedure which eliminates an unnecessary cycle, i.e., let ρ =

ρ0ρ1 . . . ρk . . . ρk+` . . . such that ρk . . . ρk+` is an unnecessary cycle, ρ be-
comes ρ′ = ρ0 . . . ρkρk+`+1 . . .

• (P2) the procedure which turns ρ into a lasso ρ′ = h`ω by copying ρ
long enough for all players to visit their target set and then to form a
cycle after the last player has visited his target set. If no player visits his
target set along ρ, then (P2) only copies ρ long enough to form a cycle.

Notice that, given ρ ∈ Plays, applying (P1) or (P2) may involve a decreasing
of the costs but for (P1) and (P2) Visit(ρ) = Visit(ρ′). Additionally, after
applying (P2) we have that Visit(h) = Visit(ρ′). Moreover, applying (P1)
until it is no longer possible and then (P2) leads to a lasso with length at most
(|Π|+1) · |V | and cost less than or equal to |Π| · |V | for players who have visited
their target set.

Lemma 12.3.3. Let (G, v0) be a multiplayer quantitative Reachability game
and ρ ∈ Plays be a play.

• If ρ′ is obtained by applying (P1) on ρ, then (Costi(ρ
′))i∈Π ≤

(Costi(ρ))i∈Π
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• If ρ′ is obtained by applying (P2) on ρ, then (Costi(ρ
′))i∈Π =

(Costi(ρ))i∈Π.

• Applying (P1) until it is no longer possible and then (P2), leads to a
lasso ρ′ with length at most (|Π|+ 1) · |V | and Costi(ρ

′) ≤ |V | · |Π| for
each i ∈ Visit(ρ′).

Remark 12.3.4 (about Lemma 12.3.3). Notice that, given a quantitative Reach-
ability game (G, v0), as its extended game (X , x0) is also a quantitative Reach-
ability game, all statements of Lemma 12.3.3 also hold for the latter game.
Notice that the third assertion applied to (X , x0) leads to upper bounds where
|V | must be replaced by |V X | which is exponential in |Π| (see Definition 4.2.1).

In fact, even in the extended game (X , x0) we can obtain the same result:
applying (P1) until it is no longer possible and then (P2), leads to a lasso ρ′

with size at most (|Π|+ 1) · |V | and Costi(ρ
′) ≤ |V | · |Π| for each i ∈ Visit(ρ′).

This is because along a play ρ in the extended game, the second components
of the vertices of ρ form a non-decreasing sequence.

Additionally, applying (P1) or (P2) on Visitλ-consistent plays preserves
this property. This is stated in Lemma 12.3.5 which is in particular true for
extended games.

Lemma 12.3.5. Let (G, v0) be a multiplayer quantitative Reachability game
and ρ ∈ Plays be a Visitλ-consistent play for a given labeling function λ.
If ρ′ is the play obtained by applying (P1) or (P2) on ρ, then ρ′ is Visitλ-
consistent.

Lemmas 12.3.3 and 12.3.5 allow us to claim that it is sufficient to deal with
lassoes with polynomial length to solve Problems 3, 4 and 5. Moreover, it
yields some bounds on the needed memory and the costs for each problem as
stated in the next two propositions.

The first proposition is used to solve Problems 3 and 4.
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Proposition 12.3.6. Let σ be an NE (resp. SPE) in a multiplayer quantita-
tive Reachability game (G, v0) (resp. (X , x0) its extended game). Let w0 = v0

(resp. w0 = x0). Then there exists τ an NE (resp. SPE) in (G, v0) (resp.
(X , x0)) such that:

• 〈τ〉w0 is a lasso h`ω such that |h`| ≤ (|Π|+ 1) · |V |;

• for each i ∈ Visit(〈τ〉w0), Costi(〈τ〉w0) ≤ |Π| · |V |;

• τ has memory in O(|Π| · |V |) (resp. O(|Π| · 2|Π| · |V |(|Π|+2)·(|V |+3)+1)).

Moreover, given y ∈ (N ∪ {+∞})|Π|, k ∈ {0, . . . , |Π|} and c ∈ N ∪ {+∞}:

• If (Costi(〈σ〉w0))i∈Π ≤ y, then (Costi(〈τ〉w0))i∈Π ≤ y;

• If SW(〈σ〉w0) � (k, c), then SW (〈τ〉w0) � (k, c).

The following proposition is used to solve Problem 5.

Proposition 12.3.7. Let σ be an NE (resp. SPE) in a multiplayer quantita-
tive Reachability game (G, v0) (resp. (X , x0) its extended game). Let w0 = v0

(resp. w0 = x0). If we have that (Costi(〈σ〉w0))i∈Π is Pareto optimal in
Plays(w0), then:

• for all i ∈ Visit(〈σ〉w0), Costi(〈σ〉w0) ≤ |V | · |Π|;

• there exists τ an NE (resp. SPE) such that 〈τ〉w0 = h`ω, |h`| ≤ (|Π|+
1) · |V | and (Costi(〈σ〉w0))i∈Π = (Costi(〈τ〉w0))i∈Π;

• τ has memory in O(|Π| · |V |) (resp. O(|Π| · 2|Π| · |V |(|Π|+2)·(|V |+3)+1)).

For the sake of clarity we relegate the proofs of Propositions 12.3.6 and 12.3.7
to Appendix B.2.

12.3.2 Algorithms and memory requirements

In this section, we provide the main ideas behind the results stated in Theo-
rems 12.3.1 and 12.3.2.
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Algorithm for NEs

We first focus on Theorem 12.3.1 for NEs, i.e., Problem 3 and Problem 4 are
NP-complete while Problem 5 is NP-hard and belongs to ΣP

2 . We only provide
algorithms to solve these problems and their related complexity, since the proof
for the NP-hardness is very similar to the one given in [CFGR16]. Recall that
ΣP

2 is by definition the class NPNP, it is also equal to NPco-NP. The algorithm
for each problem works as follows:

1. it guesses a lasso of polynomial length;

2. it verifies that the cost profile of this lasso satisfies the conditions3 given
by the problem;

3. it verifies that the lasso is the outcome of an NE.

Let us comment on the different steps of these algorithms.

• Step 1: For Problem 3 and Problem 4 (resp. Problem 5), it is sufficient
to consider plays which are lassoes with polynomial length thanks to
Proposition 12.3.6 (resp. Proposition 12.3.7).

• Step 3: This property is verified thanks to Theorem 6.2.3. This is done
in polynomial time as the lasso has a polynomial length and the values
of the coalitional games are computed in polynomial time [BGHM17].

• Step 2: For Problem 3 and Problem 4, this verification can be obviously
done in polynomial time. For Problem 5, we need to have an oracle
allowing us to know if the cost profile of the lasso is Pareto optimal. As
a consequence, we study Problem 6 which lies in co-NP.

Problem 6. Given a multiplayer quantitative Reachability game (G, v0)

(resp. its extended game (X , x0)) and a lasso ρ ∈ Plays(v0) (resp. ρ ∈
Plays(x0)), we want to decide if (Costi(ρ))i∈Π is Pareto optimal in Plays(v0)

(resp. Plays(x0)).

3Satisfying the conditions is either satisfying the constraints (Problem 3 and Problem 4)
or having a cost profile which is Pareto optimal (Problem 5).



12.3 – Solving decision problems 227

Proposition 12.3.8. Problem 6 lies in co-NP.

Proof. Let (G, v0) be a multiplayer quantitative Reachability game (resp.
(X , x0) be its extended game) and let ρ ∈ Plays(v0) (resp. ρ ∈ Plays(x0))
be a lasso. If ρ is not Pareto optimal, there exists a play ρ′ such that
(Costi(ρ))i∈Π ≥ (Costi(ρ

′))i∈Π and (Costi(ρ))i∈Π 6= (Costi(ρ
′))i∈Π. More-

over, thanks to Lemma 12.3.3, one may assume that ρ′ is a lasso with size at
most (|Π|+1)·|V |. So, we only have to guess such a lasso ρ′ and to verify that
(Costi(ρ))i∈Π ≥ (Costi(ρ

′))i∈Π and (Costi(ρ))i∈Π 6= (Costi(ρ
′))i∈Π. This can

be done in polynomial time.

Algorithm for SPEs

We now focus on Theorem 12.3.1 for SPEs, i.e., Problems 3, 4 and 5 are
PSPACE-complete. The PSPACE-completeness of Problem 3 is already solved
(see Theorem 12.1.1). We thus provide algorithms to solve Problems 4 and 5
and their related complexity. We do not provide the proof for the PSPACE-
hardness as it is very similar to the one given in Section 11.3.2.

The algorithm for Problem 4 and 5 works as follows:

1. it guesses a lasso of polynomial length;

2. it verifies that the cost profile c of this lasso satisfies the conditions given
by the problem;

3. it checks, whether there exists an SPE with cost profile equal to c.

The explanations for the first and the second steps are the same as for
the algorithms for NEs. Finally, we know that the third step can be done in
PSPACE by Theorem 12.1.1.

Memory requirements

We now turn to Theorem 12.3.2 that provides memory requirements for the
equilibria in case of positive answer to the studied decision problems. Its
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proof directly follows from Proposition 12.3.6 (resp. Proposition 12.3.7) for
Problems 3 and 4 (resp. Problem 5).

Notice nevertheless that these results provide memory requirements for
SPEs in the extended game and not in the quantitative Reachability game
itself. In fact the corresponding SPE in the quantitative Reachability game
needs the same amount of memory.

We also present a useful result, although also interesting in its own right,
to prove memory requirements for SPEs.

Proposition 12.3.9. Let (G, v0) be an initialized multiplayer quantitative
Reachability game and let (X , x0) be its associated extended game. Given
a cost profile c ∈ (N ∪ {+∞})|Π|, we set M = max

i∈Π
{ci | ci < +∞} if this

maximum exists and M = 0 otherwise. Then, the following assertions are
equivalent:

1. There exists an SPE σ in (X , x0) such that Cost(〈σ〉x0) = c;

2. There exists a finite good symbolic witness P in (X , x0) such that:

• Cost(ρ(0,x0)) = c;

• the length of the lasso ρ(0,x0) is bounded by M + |V |;

• the length of each lasso ρ(i,x) (with (i, x) 6= (0, x0)) is bounded by
a value in O(|V |(|Π|+2)·(|V |+3)) + |Π| · |V |.

3. There exists an SPE τ in (X , x0) such that Cost(〈τ〉x0) = c and the
memory size of τ is in O(M + |Π| · 2|Π| · |V |(|Π|+2)·(|V |+3)+1).

A proof of this result is given in Appendix B.2.

12.4 The qualitative setting

In the previous sections, we have considered quantitative Reachability prob-
lems. In this section we consider the qualitative variant and investigate the
difference with the previously obtained results.
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12.4.1 Qualitative Reachability games

All along this section we focus on qualitative Reachability games.

Let us recall that in this particular setting, players only aim at reaching
their target set but do not take into account the number of steps it takes. Player
i receives a gain of 1 if ρ visits his target set Fi, and a gain of 0 otherwise.
Thus each player i wants to maximize his gain.

Lemma 12.4.1 ([De 13, Proposition 4.1.4]). Let (G, v0) be an initialized
multiplayer quantitative Reachability game and σ be a strategy profile in this
game. Consider the related qualitative Reachability game G′ with the same
arena A and target sets (Fi)i∈Π, but the gain functions (Gaini)i∈Π. Then if
σ is an NE (resp. SPE) in (G, v0), then σ is also an NE (resp. SPE) in
(G′, v0).

Thus, as it is proved that there always exists an SPE (and thus an NE)
in a quantitative Reachability game, there always exists one in a qualitative
Reachability game.

Theorem 12.4.2. In every initialized multiplayer qualitative Reachability
game, there always exists an SPE, and thus also an NE.

12.4.2 Decision problems and complexity results

In case of qualitative Reachability, as for quantitative Reachability games, we
are interested in a solution that fulfills certain requirements. For example,
we would like to know whether there exists a solution such that a maximum
number of players visit their target sets.

Let (G, v0) be an initialized multiplayer qualitative Reachability game with
G = (A, (Gaini)i∈Π, (Fi)i∈Π). Given ρ ∈ Plays(v0), we denote by Visit(ρ) the
set of players i such that ρ visits Fi, that is, Visit(ρ) = {i ∈ Π | Gaini(ρ) = 1}.
The social welfare SW(ρ) of ρ is the size of Visit(ρ). Let P ⊆ {0, 1}|Π| be the
set of all gain profiles p = (Gaini(ρ))i∈Π, with ρ ∈ Plays(v0). A cost profile
p ∈ P is called Pareto optimal in Plays(v0) if it is maximal in P with respect



230 Chapter 12 – Other Relevant Equilibria in Reachability Games

to the componentwise ordering ≤ on P . Notice that if there exists ρ with
Visit(ρ) = Π, then its social welfare is the largest possible and there exists
a unique Pareto optimal gain profile equal to (1, 1, . . . , 1). Notice also that
certain target sets Fi might be empty or not reachable from the initial vertex
v0. Hence in this case, the best that we can hope is a (unique) Pareto optimal
gain profile p such that pi = 1 if and only if Fi is reachable4 from v0.

Qualitative variant of Problem 3 Given an initialized multiplayer quali-
tative Reachability game (G, v0), given two thresholds x, y ∈ {0, 1}|Π|, decide
whether there exists a solution σ such that x ≤ (Gaini(ρ))i∈Π ≤ y.

Let us notice that the Qualitative variant of Problem 3 is in fact the
(Boolean) constrained existence problem (Problem 1). We recall that imposing
a lower bound xi = 1 means that Player i has to visit his target set whereas
imposing an upper bound yi = 0 means that Player i cannot visit his target
set.

Unlike quantitative Reachability, social welfare in qualitative Reachability
games only aims to maximize the number of players who visit their target set.

Qualitative variant of Problem 4 Given an initialized multiplayer qual-
itative Reachability game (G, v0), given a threshold k ∈ {0, . . . , |Π|}, decide
whether there exists a solution σ such that SW(〈σ〉v0) ≥ k.

Let us now state the last studied problem for qualitative Reachability
games.

Qualitative variant of Problem 5 Given an initialized multiplayer qual-
itative Reachability game (G, v0) decide whether there exists a solution σ in
(G, v0) such that (Gaini(〈σ〉v0))i∈Π is Pareto optimal in Plays(v0).

The latter problem has some connections with the two previous ones. For
instance in case of qualitative Reachability, suppose there exists a play in

4Notice that if Fi is reachable from v0, then it is necessarily not empty.
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Plays(v0) that visits all target sets. As already explained, there is only one
Pareto optimal gain (1, . . . , 1). Asking for the existence of a solution σ such
that (Gaini(〈σ〉v0))i∈Π is Pareto optimal is equivalent to asking for the exis-
tence of a solution σ such that Gaini(〈σ〉v0))i∈Π ≥ (1, . . . , 1) (see Qualitative
variant of Problem 3), or such that SW(〈σ〉v0) ≥ |Π| (see Qualitative variant
of Problem 4).

We can now state the qualitative variant of Theorem 12.3.1 whose results
are obtained thanks to similar arguments.

Theorem 12.4.3. Let (G, v0) be a multiplayer qualitative Reachability game.

• For NEs: the Qualitative variants of Problem 3 and Problem 4 are
NP-complete while the Qualitative variant of Problem 5 is NP-hard
and belongs to ΣP

2 .

• For SPEs: the Qualitative variants of Problems 3, 4 and 5 are
PSPACE-complete.

12.4.3 Existence problem

Theorem 12.4.4 is a direct consequence of Theorem 12.2.1 and Lemma 12.4.1.

Theorem 12.4.4. Let (G, v0) be an initialized multiplayer qualitative Reach-
ability game such that its arena A is strongly connected. Then there exists
an SPE σ (and thus an NE) such that its outcome 〈σ〉v0 visits all target sets
Fi, i ∈ Π, that are non-empty.

Let us comment on this result. For this family of games, the answer to the
Qualitative variant of Problem 3 is always positive for particular thresholds.
Take thresholds x, y such that xi = 1 (and thus yi = 1) if and only if Fi 6= ∅.
The answer to the Qualitative variant of Problem 4 is also always positive for
threshold k = |{i | Fi 6= ∅}|. Finally, the answer to the Qualitative variant of
Problem 5 is also always positive since there exists an unique Pareto optimal
gain profile p such that pi = 1 if and only if Fi 6= ∅.
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Recall that we explained before why it was enough to prove Theorem 12.2.1
for SPEs and for quantitative reachability games only. Notice that in case
of qualitative Reachability games, there exists a simpler construction of the
required NE or SPE. Indeed, as the arena is strongly connected, there exists
a play ρ ∈ Plays(v0) that visits all non-empty target sets. (i) Hence to get an
NE, construct a strategy profile σ in (G, v0) such that 〈σ〉v0 = ρ. As the gain
profile of σ is the best that each player can hope, no player has an incentive
to deviate and σ is then an NE. (ii) The construction is a little more complex
to get an SPE. We again construct a strategy profile σ in (G, v0) such that
〈σ〉v0 = ρ, and inductively extend its construction to all subgames (G�h, v) as
follows. Assume that σ�h is not yet constructed, then extend the construction
of σ such that σ�h = gρ for some gv0 starting in v and ending in v0 (such a
history gv0 exists because the arena is strongly connected). In this way, the
outcome of σ�h in each subgame (G, v) has gain profile (1, . . . , 1) and no player
has an incentive to deviate. It follows that σ is an SPE.

The next theorem states that the Qualitative variant of Problem 5 has a
positive answer for all qualitative Reachability games with a number of players
limited to two, and that this existence result cannot be extended to three
players.

Theorem 12.4.5. Let (G, v0) be an initialized multiplayer qualitative Reach-
ability game,

• Let (G, v0) be an initialized multiplayer qualitative Reachability game
such that |Π| = 2, there exists an SPE σ (and thus an NE) with a gain
profile that is Pareto optimal in Plays(v0).

• There exists an initialized multiplayer qualitative Reachability games
with |Π| = 3 that has no NE with a gain profile that is Pareto optimal
in Plays(v0).

Let us focus on the proof of Theorem 12.4.5 which is based on the next
lemma, which is interesting in its own right.
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Lemma 12.4.6. Let (G, v0) be an initialized multiplayer qualitative Reacha-
bility game. Let p be a gain profile equal to (0, 0, . . . , 0) or (1, 1, . . . , 1). If p
is Pareto optimala in Plays(v0), then there exists an SPE σ with gain profile
p.

a(1, 1, . . . , 1) is trivially Pareto optimal.

Proof. The case p = (0, 0, . . . , 0) is easy to solve. By Pareto optimality,
all plays in Plays(v0) have gain profile p. Hence every strategy profile σ is
trivially an SPE with gain profile p. Let us turn to case p = (1, 1, . . . , 1) and
let ρ = ρ0ρ1 . . . ∈ Plays(v0) with gain profile p. By Theorem 12.4.2a, there
exists an SPE σ in (G, v0). If (Gaini(〈σ〉v0))i∈Π = p, we are done. Otherwise
let us show how to modify σ into another SPE τ with outcome ρ and thus
with gain profile p. Let h ∈ Histi(v0), i ∈ Π,

• if h is a prefix of ρ, then τi(h) = ρ|h|+1,

• otherwise, τi(h) = σi(h).

Let us prove that τ is an SPE. Clearly for each history hv that is not a prefix
of ρ, τ�h = σ�h is an NE in the subgame (G�h, v). So let hv = ρ0 . . . ρk. As
〈τ�h〉v has gain profile (1, 1, . . . , 1) in (G�h, v), player i such that v ∈ Vi has
no incentive to deviate, and then τ�h is also an NE in (G�h, v).

aNotice that we cannot apply Theorem 12.2.1 since the arena is not necessarily strongly
connected.

v0v1 v2

v3

v4

v5

v6

(0, 1, 0)

(1, 0, 1)

(1, 1, 0)

(0, 0, 1)

Figure 12.3: A multiplayer qualitative Reachability game that has no NE with
a gain profile that is Pareto optimal



234 Chapter 12 – Other Relevant Equilibria in Reachability Games

Proof of Theorem 12.4.5. We begin with the first item. There are three cases
to study: either the unique Pareto optimal gain profile of Plays(v0) is equal
to (0, 0), or it is equal to (1, 1), or there are one or two Pareto optimal
gain profiles that belong to {(0, 1), (1, 0)}. In the first two cases, we get the
required SPE by Lemma 12.4.6. Hence it remains to treat the last case. From
Lemma B.2.1, we know that there exists an SPE in (G, v0) whose outcome ρ
visits a least one target set Fi, i ∈ {1, 2}. Therefore the gain profile of ρ is
either equal to (0, 1) or (1, 0) as required.
For the second item, consider the initialized multiplayer qualitative Reacha-
bility game (G, v0) of Figure 12.3. We have three players such that player 3

owns diamond vertices. Moreover, F1 = {v4, v5}, F2 = {v3, v5}, and
F3 = {v4, v6}. There are four plays in Plays(v0) whose gain profile is indi-
cated below each of them. The set of Pareto optimal gain profiles in Plays(v0)

is equal to {(1, 0, 1), (1, 1, 0)}. Consider a strategy profile σ with outcome
v0v1v

ω
4 and gain profile (1, 0, 1). Then it is not an NE because player 2 has

a profitable deviation by going from v1 to v3 (instead of v4). Similarly the
strategy profile σ with outcome v0v2v

ω
5 and gain profile (1, 1, 0) is not an NE.

Therefore there is no NE in (G, v0) with a gain profile that is Pareto optimal.
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CHAPTER 13

INTRODUCTION

In this last part, based on [BG20], we investigate how the characterizations and
the studied problems of the previous parts may be considered in other models.
For that purpose we choose to investigate multiplayer turn-based timed games,
and in particular multiplayer turn-based qualitative Reachability timed games.

Even if we are conscious that our choice leads to redundancy, we want that
this part can be read independently of the rest of this document. Hence all the
needed background and previous results is recalled when needed. Moreover,
since in the previous parts the arena of the games are assumed to be finite and
without alphabet on the edge, this choice allows to avoid any ambiguity on the
models of interest.

Remark 13.0.1. Let us mention the connections with the previous parts.

• In Section 16.2.1:

– the notion of extended game of a qualitative Reachability game is
defined: see Section 4.2;

– The characterization of outcomes of SPEs in qualitative Reachabil-
ity games based on λ∗-consistent plays is provided: see Section 7.4.2.

• In Section 16.2.2: we prove that the constrained existence problem of
SPEs in (finite) qualitative Reachability game can be solved by an al-
gorithm whose time complexity is at most exponential in the number of

237
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players and polynomial in the size of its transition system. The argu-
ments used in this proof are the same as those used in Section 9.1.2.

• Notice also that, in this part, when we consider Reachability objectives
it is always a qualitative Reachability objective.

Games

In the context of reactive systems, two-player zero-sum games played on graphs
are commonly used to model the purely antagonistic interactions between a
system and its environment [PR89]. The system and the environment are
the two players of a game played on a graph whose vertices represent the
configurations. Finding how the system can ensure the achievement of his
objective amounts to finding, if it exists, a winning strategy for the system.

When modeling complex systems with several agents whose objectives are
not necessarily antagonistic, the two-player zero-sum framework is too restric-
tive and we rather rely on multiplayer non zero-sum games. In this setting, the
notion of winning strategy is replaced by various notions of equilibria includ-
ing the famous concept of Nash equilibrium (NE) [Nas50]. When considering
games played on graphs, the notion of subgame perfect equilibrium (SPE) is
often preferred to the classical Nash equilibrium [Osb04]. Indeed, Nash equi-
librium does not take into account the sequential structure of the game and
may allow irrational behaviors in some subgames.

Timed games

Timed automata [AD94] is now a well established model for complex systems
including real time features. Timed automata have been naturally extended
into two-player zero-sum timed games [AM99, CDF+05, BCD+07, JT07]. Mul-
tiplayer non zero-sum extensions have also been considered [BBM10, Bre12,
KNP19]. In these models both time and multiplayer aspects coexist. In this
non zero-sum timed framework, the main focus has been on NE, and, to our
knowledge, not on SPE.
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Main contributions and organization of the part.

In this part, we consider multiplayer, non zero-sum, turn-based timed games
with reachability objectives together with the concept of SPE. We focus on
the constrained existence problem (for SPE): given a timed game, we want
to decide whether there exists an SPE where some players have to win and
some other ones have to lose. The main result of this part is a proof that
the SPE constrained existence problem is EXPTIME-complete for reachability
timed games. Let us notice that the NE constrained existence problem for
reachability timed games is also EXPTIME-complete [Bre12]. This may look
surprising as often, there is a complexity jump when going from NE to SPE,
for example the constrained existence problem on qualitative reachability game
is NP-complete for NE [CFGR16] and PSPACE-complete for SPE [BBGR18]
(see also Chapter 10). Intuitively, the complexity jump is avoided because
the exponential blow up due to the transition from SPE to NE is somehow
absorbed by the classical exponential blow up due to the classical region graph
used for the analysis of timed systems.

In order to obtain an EXPTIME algorithm, we proceed in different steps.
In the first step, we prove that the game variant of the classical region graph
is a good abstraction for the SPE constrained existence problem. In fact, we
identify conditions on bisimulations under which the study of SPE of a given
(potentially infinite game) can be reduced to the study of its quotient. This is
done in Chapter 15 for (untimed) games with general objectives. In Chapter 16,
we then focus on (untimed) finite reachability game and provide an EXPTIME
algorithm to solve the constrained existence problem. Proving this result may
look surprising, as we already know from [BBGR18] (Chapter 10) that this
problem is indeed PSPACE-complete for (untimed) finite games. However
the PSPACE algorithm provided in [BBGR18] (Chapter 10) did not allow us
to obtain the EXPTIME algorithm for timed games. The latter EXPTIME
algorithm is discussed in Chapter 17.

Related works

There are many results on games played on graphs, we refer the reader to
[Bru17] for a survey and an extended bibliography. Here we focus on the re-



240 Chapter 13 – Introduction

sults directly related to our contributions. The constrained existence of SPEs
is studied in finite multiplayer turn-based games with different kinds of objec-
tives, for example: (qualitative) reachability and safety objectives [BBGR18]
(Chapter 10), ω-regular winning conditions [Umm06], quantitative reachability
objectives [BBG+19],... In [BBM10], they prove that the constrained existence
problem for Nash equilibria in concurrent timed games with reachability objec-
tives is EXPTIME-complete. This same problem in the same setting is studied
in [Bre12] with others qualitative objectives.
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PRELIMINARIES

Transition systems, bisimulations and quotients

A transition system is a tuple T = (Σ, V, E) where (i) Σ is a finite alphabet;
(ii) V a set of states (also called vertices) and (iii) E ⊆ V × Σ × V a set of
transitions (also called edges). To ease the notation, an edge (v1, a, v2) ∈ E is
sometimes denoted by v1

a−→ v2. Notice that V may be uncountable. We said
that the transition system is finite if V and E are finite.

Given two transition systems on the same alphabet T1 = (Σ, V1, E1) and
T2 = (Σ, V2, E2), a simulation of T1 by T2 is a binary relation R ⊆ V1 × V2

which satisfies the following conditions: (i) ∀v1, v
′
1 ∈ V1, ∀v2 ∈ V2 and ∀a ∈ Σ:

((v1, v2) ∈ R and v1
a−→1 v

′
1)⇒ (∃v′2 ∈ V2, v2

a−→2 v
′
2 and (v′1, v

′
2) ∈ R) and (ii)

for each v1 ∈ V1 there exists v2 ∈ V2 such that (v1, v2) ∈ R. We say that T2

simulates T1. It implies that any transition v1
a−→1 v

′
1 in T1 is simulated by a

corresponding transition v2
a−→2 v

′
2 in T2.

Given two transition systems on the same alphabet T1 = (Σ, V1, E1) and
T2 = (Σ, V2, E2), a bisimulation between T1 and T2 is a binary relation R ⊆
V1× V2 such that R is a simulation of T1 by T2 and the converse relation R−1

is a simulation of T2 by T1 where R−1 = {(v2, v1) ∈ V2 × V1 | (v1, v2) ∈ R}.
When R is a bisimulation between two transition systems, we write β instead
of R. If T = (Σ, V, E) is a transition system, a bisimulation on V ×V is called
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a bisimulation on T .
Given a transition system T = (Σ, V, E) and an equivalence relation ∼ on

V , we define the quotient of T by ∼, denoted by T̃ = (Σ, Ṽ , Ẽ), as follows: (i)
Ṽ = {[v]∼ | v ∈ V } where [v]∼ = {v′ ∈ V | v ∼ v′} and (ii) [v1]∼

a−→∼ [v2]∼ if
and only if there exist v′1 ∈ [v1]∼ and v′2 ∈ [v2]∼ such that v′1

a−→ v′2. When the
equivalence relation is clear from the context, we write [v] instead of [v]∼.

Given a transition system T = (Σ, V, E), a bisimulation ∼ on T which is
also an equivalence relation is called a bisimulation equivalence. In this context,
the following result holds.

Lemma 14.0.1. Given a transition system T and a bisimulation equiva-
lence ∼, there exists a bisimulation ∼q between T and its quotient T̃ . This
bisimulation is given by the function ∼q: V → Ṽ : v 7→ [v]∼

Turn-based games

Arenas, plays and histories An arena A = (Σ, V, E,Π, (Vi)i∈Π) is a tuple
where (i) T = (Σ, V, E) is a transition system such that for each v ∈ V , there
exists a ∈ Σ and v′ ∈ V such that (v, a, v′) ∈ E; (ii) Π = {1, . . . , n} is a finite
set of players and (iii) (Vi)i∈Π is a partition of V between the players. An
arena is finite if its transition system T is finite.

A play in A is an infinite path in its transition system, i.e., ρ = ρ0ρ1 . . . ∈
V ω is a play if for each i ∈ N, there exists a ∈ Σ such that (ρi, a, ρi+1) ∈ E.
A history h in A can be defined in the same way but h = h0 . . . hk ∈ V ∗ for
some k ∈ N is a finite path in the transition system. We denote the set of
plays by Plays and the set of histories by Hist. When it is necessary, we use
the notation PlaysA and HistA to recall the underlying arena A. Moreover,
the set Histi is the set of histories such that their last vertex v is a vertex of
Player i, i.e., v ∈ Vi. A play (resp. a history) in (G, v0) is then a play (resp. a
history) in G starting in v0. The set of such plays (resp. histories) is denoted
by Plays(v0) (resp. Hist(v0)). We also use the notation Histi(v0) when these
histories end in a vertex v ∈ Vi.

Given a play ρ ∈ Plays and k ∈ N, its suffix ρkρk+1 . . . is denoted by ρ≥k.
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We denote by Succ(v) = {v′|(v, a, v′) ∈ E for some a ∈ Σ} the set of successors
of v, for v ∈ V , and by Succ∗ the transitive closure of Succ. Given a play
ρ = ρ0ρ1 . . ., the set Occ(ρ) = {v ∈ V | ∃k, ρk = v} is the set of vertices visited
along ρ.

Remark 14.0.2. When we consider a play in an arena A = (Σ, V, E,Π, (Vi)i∈Π),
we do not care about the alphabet letter associated with each edge of the play.
It is the reason why two different infinite paths in T = (Σ, V, E) v0

a−→ v1
a−→

. . .
a−→ vn

a−→ . . . and v0
b−→ v1

b−→ . . .
b−→ vn

b−→ . . . correspond to only one play
ρ = v0v1 . . . vn . . . in A. The same phenomenon appears with finite paths and
histories. We explain later why this is not a problem for our purpose.

Multiplayer turn-based game An (initialized multiplayer Boolean turn-
based) game is a tuple (G, v0) = (A, (Gaini)i∈Π) such that: (i) A =

(Σ, V, E,Π, (Vi)i∈Π) is an arena; (ii) v0 ∈ V is the initial vertex and (iii)
for each i ∈ Π, Gaini : Plays → {0, 1} is a gain function for Player i. In this
setting, each player i ∈ Π is equipped with a set Ωi ⊆ Plays that we call the
objective of Player i. Thus, for each i ∈ Π, for each ρ ∈ Plays: Gaini(ρ) = 1

if and only if ρ ∈ Ωi. If Gaini(ρ) = 1 (resp. = 0), we say that Player i wins
(resp. loses) along ρ. In the remaining part of this document, we refer to the
notion of initialized multiplayer Boolean turn-based game by the term “game”.
For each ρ ∈ Plays, we write Gain(ρ) = p for some p ∈ {0, 1}|Π| to depict
Gaini(ρ) = pi for each i ∈ Π.

Strategies and outcomes Given a game (G, v0), a strategy of Player i is a
function σi : Histi(v0) → V with the constraint that for each hv ∈ Histi(v0),
σi(hv) ∈ Succ(v). A play ρ = ρ0ρ1 . . . is consistent with σi if for each ρk such
that ρk ∈ Vi, ρk+1 = σi(ρ0 . . . ρk). A strategy profile σ = (σi)i∈Π is a tuple of
strategies, one for each player. Given a game (G, v0) and a strategy profile σ,
there exists a unique play from v0 consistent with each strategy σi. We call
this play the outcome of σ and denote it by 〈σ〉v0 .

Remark 14.0.3. We follow up Remark 14.0.2. The objectives we consider are
of the form Ω ⊆ Plays. These objectives only depend on the sequence of
visited states along a play (for example: visiting infinitely often a given state)
regardless of the sequence of visited alphabet letters. This is why defining the
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strategy of a player with a choice of the next vertex instead of a couple of
an alphabet letter and a vertex is not a problem. Actually, in all this part
one may consider that the alphabet is Σ = {a}. The reason why we allow
alphabet letters on edges is to be able to consider synchronous products of
(timed) automata [BK08, AD94]. In this way, we could consider wider class of
objectives (see Section 17.4).

Subgame perfect equilibria

In the multiplayer game setting, the solution concepts usually studied are equi-
libria (see [GU08]). We here recall the concepts of Nash equilibrium and sub-
game perfect equilibrium.

Let σ = (σi)i∈Π be a strategy profile in a game (G, v0). When we highlight
the role of Player i, we denote σ by (σi, σ−i) where σ−i is the profile (σj)j∈Π\{i}.
A strategy σ′i 6= σi is a deviating strategy of Player i, and it is a profitable
deviation for him if Gaini(〈σ〉v0) < Gaini(〈σ′i, σ−i〉v0). A strategy profile σ
in a game (G, v0) is a Nash equilibrium (NE) if no player has an incentive to
deviate unilaterally from his strategy, i.e., no player has a profitable deviation.

A refinement of NE is the concept of subgame perfect equilibrium (SPE)
which is a strategy profile being an NE in each subgame. Formally, given a
game (G, v0) = (A, (Gaini)i∈Π) and a history hv ∈ Hist(v0), the game (G�h, v) is
called a subgame of (G, v0) such that G�h = (A, (Gaini�h)i∈Π) and Gaini�h(ρ) =

Gaini(hρ) for all i ∈ Π and ρ ∈ V ω. Notice that (G, v0) is subgame of itself.
Moreover if σi is a strategy for Player i in (G, v0), then σi�h denotes the strategy
in (G�h, v) such that for all histories h′ ∈ Histi(v), σi�h(h′) = σi(hh

′). Similarly,
from a strategy profile σ in (G, v0), we derive the strategy profile σ�h in (G�h, v).
Let (G, v0) be a game, following this formalism, a strategy profile σ is a subgame
perfect equilibrium in (G, v0) if for all hv ∈ Hist(v0), σ�h is an NE in (G�h, v).

Studied problem

Given a game (G, v0), several SPEs may coexist. It is the reason why we are
interested in the constrained existence of an SPE in this game: some players
have to win and some other ones have to lose. The related decision problem is
the following one:



245

Definition 14.0.4 (Constrained existence problem). Given a game (G, v0) and
two gain profiles x, y ∈ {0, 1}|Π|, does there exist an SPE σ in (G, v0) such that
x ≤ Gain(〈σ〉v0) ≤ y.





CHAPTER 15

SPES IN A GAME AND ITS QUOTIENT

In this section, we first define the concepts of bisimulation between games and
of bisimulation on a game. Then, we explain how given such bisimulations we
can obtain a new game, called the quotient game, thanks to a quotient of the
initial game. Finally, we prove that if there exists an SPE in a game with a
given gain profile, there exists an SPE in its associated quotient game with the
same gain profile, and vice versa.

15.1 Game bisimulation

We extend the notion of bisimulation between transition systems (resp. on a
transition system) to the one of bisimulation between games (resp. on a game).
In this document, by bisimulation between games (resp. on a game) we mean:

Definition 15.1.1 (Game bisimulation). Given two games (G, v0) =

(A, (Gaini)i∈Π) and (G′, v′0) = (A′, (Gain′i)i∈Π) with the same alphabet and
the same set of players, we say that ∼ ⊆ V × V ′ is a bisimulation between
(G, v0) and (G′, v′0) if (i) ∼ is a bisimulation between T = (Σ, V, E) and
T ′ = (Σ, V ′, E′) and (ii) v0 ∼ v′0. In the same way, if ∼ ⊆ V × V we say
that ∼ is a bisimulation on (G, v0) if ∼ is a bisimulation on T = (Σ, V, E).

247
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The notion of bisimulation equivalence on a transition system is extended in
the same way to games. In the rest of this document, we use the following no-
tations: (1) If ∼ ⊆ V × V ′ is a bisimulation between (G, v0) = (A, (Gaini)i∈Π)

and (G′, v′0) = (A′, (Gain′i)i∈Π), for each ρ ∈ PlaysA and for all ρ′ ∈ PlaysA′ ,
we write ρ ∼ ρ′ if and only if for each n ∈ N: ρn ∼ ρ′n. (2) If ∼ ⊆ V × V
is a bisimulation on (G, v0) = (A, (Gaini)i∈Π), for each ρ ∈ PlaysA and for all
ρ′ ∈ PlaysA, we write ρ ∼ ρ′ if and only if for each n ∈ N: ρn ∼ ρ′n. (3) Nota-
tions 1 and 2 can be naturally adapted to histories1.

A natural property that should be satisfied by a bisimulation on a game is
the respect of the vertices partition. It means that if a vertex bisimulates an
other vertex, then these vertices should be owned by the same player.

Definition 15.1.2 (∼ respects the partition). Given a game (G, v0) =

(A, (Gaini)i∈Π) and a bisimulation ∼ on (G, v0), we say that ∼ respects the
partition if for all v, v′ ∈ V such that v ∼ v′, if v ∈ Vi then v′ ∈ Vi.

15.2 Quotient game

Given a game (G, v0) and a bisimulation equivalence ∼ on it which respects the
partition, one may consider its associated quotient game (G̃, [v0]) such that its
transition system is defined as the quotient of the transition system of (G, v0).

Definition 15.2.1 (Quotient game). Given a game (G, v0) = (A, (Gaini)i∈π)

such that A = (Σ, V, E,Π, (Vi)i∈Π), if ∼ is a bisimulation equivalence on
(G, v0) which respects the partition, the associated quotient game (G̃, [v0]) =

(Ã, ( ˜Gaini)i∈Π) is defined as follows: (i) Ã = (Σ, Ṽ , Ẽ, (Ṽi)i∈Π) is such that
T̃ = (Σ, Ṽ , Ẽ) is the quotient of T and, for each i ∈ Π, [v] ∈ Ṽi if and only if
v ∈ Vi and (ii) for each i ∈ Π, ˜Gaini : PlaysÃ → {0, 1} is the gain function

1Once again, with this convention it is possible that two plays (or histories) such that
ρ ∼ ρ′ do not preserve the sequence of alphabet letters as it should be when we classically
consider bisimulated paths in two bisimulated transitions systems. Remark 14.0.3 explains
why it is not a problem for us.
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of Player i.

In order to preserve some equivalent properties between a game and its
quotient game, the equivalence relation on the game should respect the gain
functions in both games. It means that if we consider two bisimulated plays
either both in the game itself or one in the game and the other one in its
quotient game, the gain profile of these plays should be equal.

Definition 15.2.2 (∼ respects the gain functions). Given an initialized game
(G, v0) = (A, (Gaini)i∈π) such that A = (Σ, V, E,Π, (Vi)i∈Π) and a bisimu-
lation equivalence ∼ on (G, v0), we say that ∼ respects the gain functions if
the following properties hold: (i) for each ρ and ρ′ in Plays, if ρ ∼ ρ′ then
Gain(ρ) = Gain(ρ′) and (ii) for each ρ ∈ PlaysA and ρ̃ ∈ PlaysÃ, if ρ ∼q ρ̃
then Gain(ρ) = ˜Gain(ρ̃).

15.3 SPE existence

The aim of this section is to prove that, if there exists an SPE in a game
equipped with a bisimilation equivalence which respects the partition and the
gain functions, there exists an SPE in its associated quotient game with the
same gain profile, and vice versa.

Theorem 15.3.1. Let (G, v0) = (A, (Gaini)i∈Π) be a game and (G̃, [v0]) =

(Ã, ( ˜Gaini)i∈Π) its associated quotient game where ∼ is a bisimulation equiv-
alence on (G, v0). If ∼ respects the partition and the gain functions, we have
that: there exists an SPE σ in (G, v0) such that Gain(〈σ〉v0) = p if and only
if there exists an SPE τ in (G̃, [v0]) such that ˜Gain(〈τ〉[v0]) = p.

The key idea is to prove that: if there exists an SPE in a game equipped
with a bisimulation equivalence, there exists an SPE in this game which is
uniform and with the same gain profile (see Proposition 15.3.3). If σi is a
uniform strategy, each time we consider two histories h ∼ h′, the choices of
Player i taking into account h or h′ are in the same equivalence class (see
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Definition 15.3.2).

Definition 15.3.2. Let (G, v0) be a game and ∼ a bisimulation on it, we say
that the strategy σi is uniform if for all h, h′ ∈ Histi(v0) such that h ∼ h′,
we have that σi(h) ∼ σi(h

′). A strategy profile σ is uniform if for all i ∈ Π,
σi is uniform.

Proposition 15.3.3. Let (G, v0) = (A, (Gaini)i∈π) be a game and ∼ be a
bisimulation equivalence on (G, v0) which respects the partition and such that
for each ρ and ρ′ in Plays, if ρ ∼ ρ′ then Gain(ρ) = Gain(ρ′), there exists
an SPE σ in (G, v0) such that Gain(〈σ〉v0) = p if and only if there exists an
SPE τ in (G, v0) which is uniform and such that Gain(〈τ〉v0) = p.

In order to ease the reading, the proofs of this section are provided in
Appendix B.3.



CHAPTER 16

QUALITATIVE REACHABILITY GAMES

In this section we focus on a particular kind of game called (qualitative) reacha-
bility game. In these games, each player has a subset of vertices that he wants
to reach. First, we formally define the concepts of reachability games and
reachability quotient games. Then, we provide an algorithm which solves the
constrained existence problem in finite reachability games in time complexity
at most exponential in the number of players and polynomial in the size of the
transition system of the game.

16.1 Reachability games and quotient reachability games

Definition 16.1.1. A reachability game (G, v0) = (A, (Gaini)i∈Π, (Fi)i∈Π)

is a game where each player i ∈ Π is equipped with a target set Fi that he
wants to reach. Formally, the objective of Player i is Ωi = {ρ ∈ Plays |
Occ(ρ) ∩ Fi 6= ∅} where Fi ⊆ V . This is a reachability objective.

Given a reachability game (G, v0) = (A, (Gaini)i∈Π, (Fi)i∈Π) and a bisim-
ulation equivalence ∼ on this game which respects the partition, one may
consider its quotient game (G̃, [v0]) = (Ã, ( ˜Gaini)i∈Π, (F̃i)i∈Π) where for each
i ∈ Π, F̃i ⊆ Ṽ . In attempts to ensure the respect of the gain functions by ∼,
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we add a natural property on ∼ (see Definition 16.1.2) and define the sets F̃i
in a proper way. In the rest of this document, we assume that this property
is satisfied and that the quotient game of a reachability game is defined as in
Definition 16.1.3.

Definition 16.1.2 (∼ respects the target sets). Let (G, v0) be a reachability
game and ∼ be a bisimulation equivalence on this game, we say that ∼
respects the target sets if for all v ∈ V and for all v′ ∈ V such that v ∼ v′:
v ∈ Fi ⇔ v′ ∈ Fi).

Definition 16.1.3 (Reachability quotient game). Given a reachability game
(G, v0) = (A, (Gaini)i∈Π, (Fi)i∈Π) and a bisimulation equivalence ∼ on this
game which respects the partition and the target sets, its quotient game is
the reachability game (G̃, [v0]) = (Ã, ( ˜Gaini)i∈Π, (F̃i)i∈Π) where F̃i = {[v]∼ |
v ∈ Fi} for each i ∈ Π. We call this game the reachability quotient game.

Lemma 16.1.4. Let (G, v0) be a reachability game and let ∼ be a bisimula-
tion equivalence. If ∼ respects the target sets in this game, then ∼ respects
the gain functions.

16.2 Complexity results

It is proved that the constrained existence problem is PSPACE-complete in fi-
nite reachability games [BBGR18] (Chapter 10). Our final purpose is to obtain
an EXPTIME algorithm for the constrained existence problem on reachabil-
ity timed games (see Chapter 17). Naively applying the PSPACE algorithm
of [BBGR18] (Chapter 10) to the region games would lead to an EXPSPACE
algorithm. That is why we provide here an alternative EXPTIME algorithm to
solve the constrained existence problem on (untimed) finite games. This new
algorithm will have the advantage to have a running time at most exponential
only in the number of players (and polynomial in the size of its transition sys-
tem). This feature will be crucial to obtain the EXPTIME algorithm on timed
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games.

Theorem 16.2.1. Given a finite reachability game (G, v0), the constrained
existence problem can be solved by an algorithm whose time complexity is at
most exponential in |Π| and polynomial in the size of its transition system.

This approach follows the proof for quantitative reachability games in
[BBG+19] (Chapter 11). This latter proof relies on two key ingredients: (i)
the extended game of a reachability game and (ii) an SPE outcome charac-
terization based on a fixpoint computation of a labeling function of the states.
Those two key ingredients will be defined below.

16.2.1 Extended game

Let (G, v0) be a finite reachability game, its associated extended game (X , x0) =

(X, (GainXi )i∈Π, (F
X
i )i∈Π) is the reachability game such that the vertices are

enriched with the set of players that have already visited their target sets along
a history. The arena X = (Σ, V X , EX ,Π, (V X

i )i∈Π) is defined as follows: (i)
V X = V × 2Π; (ii) ((v, I), a, (v′, I ′)) ∈ EX if and only if (v, a, v′) ∈ E and
I ′ = I∪{i ∈ Π | v′ ∈ Fi}; (iii) (v, I) ∈ V X

i if and only if v ∈ Vi; (iv) (v, I) ∈ FXi
if and only if i ∈ I and (v) x0 = (v0, I0) where I0 = {i ∈ Π | v0 ∈ Fi}.

The construction of (X , x0) from (G, v0) causes an exponential blow-up
of the number of states. The main idea of this construction is that if you
consider a play ρ = (v0, I0)(v1, I1) . . . (vn, In) . . . ∈ PlaysX(x0) , the set In
means that each player i ∈ In has visited his target set along ρ0 . . . ρn. The
important points are that there is a one-to-one correspondence between plays
in PlaysA(v0) and PlaysX(x0) and that the gain profiles of two corresponding
plays beginning in the initial vertices are equal. From these observations, we
have:

Proposition 16.2.2. Let (G, v0) be a reachability game and (X , x0) be its
associated extended game, let p ∈ {0, 1}|Π| be a gain profile, there exists an
SPE σ in (G, v0) with gain profile p if and only if there exists an SPE τ in
(X , x0) with gain profile p.
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In the rest of this section, we will write v ∈ V X (instead of (u, I)) and we
depict by I(v) the set I of the players who have already visited their target
set.

Outcome characterization

Once this extended game is built, we want a way to decide whether a play in this
game corresponds to the outcome of an SPE or not: we want an SPE outcome
characterization. The vertices of the extended game are labeled thanks to a
labeling function λ∗ : V X → {0, 1}. For a vertex v ∈ V X such that v ∈ V X

i ,
the value 1 imposes that Player i should reach his target set if he follows an
SPE from v and the value 0 does not impose any constraint on the gain of
Player i from v.

The labeling function λ∗ is obtained thanks to an iterative procedure such
that each step k of the iteration provides a λk-labeling function. This procedure
is based on the notion of λ-consistent play : that is a play which satisfies the
constraints given by λ all along it.

Definition 16.2.3. Let λ : V X → {0, 1} be a labeling function and ρ ∈
PlaysX, we say that ρ is λ-consistent if for each i ∈ Π and for each n ∈ N
such that ρn ∈ V X

i : GainXi (ρ≥n) ≥ λ(ρn). We write ρ |= λ.

The iterative computation of the sequence (λk)k∈N works as follows: (i)
at step 0, for each v ∈ V X , λ0(v) = 0, (ii) at step k + 1, for each v ∈
V X , by assuming that v ∈ V X

i , λk+1(v) = maxv′∈Succ(v) min{GainXi (ρ) | ρ ∈
PlaysX(v′) ∧ ρ |= λk} and (iii) we stop when we find n ∈ N such that for each
v ∈ V X , λn+1(v) = λn(v). The least natural number k∗ which satisfies (iii) is
called the fixpoint of (λk)k∈N and λ∗ is defined as λk∗ . The following lemma
states that this natural number exists and so that the iterative procedure stops.

Lemma 16.2.4. The sequence (λk)k∈N reaches a fixpoint in k∗ ∈ N. More-
over, k∗ is at most equal to |V | · 2|Π|.
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Proof sketch. In the initialization step, all the vertex values are equal to 0.
Then at each iteration, (i) if the value of a vertex was equal to 1 in the
previous step, then it stays equal to 1 all along the procedure and (ii) if the
value of the vertex was equal to 0 then it either stays equal to 0 (for this
iteration step) or it becomes equal to 1 (for all the next steps thanks to (i)).
At each step, at least one vertex value changes and when no value changes
the procedure has reached a fixpoint which corresponds to the values of λ∗.
Thus, it means that λ∗ is obtained in at most |V | × 2|Π| steps.

As claimed in the following proposition, the labeling function λ∗ exactly
characterizes the set of SPE outcomes. The proof is quite the same as for the
quantitative setting.

Proposition 16.2.5. Let (X , x0) be the extended game of a finite reachability
game (G, v0) and let ρX ∈ PlaysX(x0) be a play, there exists an SPE σ with
outcome ρX in (X , x0) if and only if ρX is λ∗-consistent.

16.2.2 Complexity

Proposition 16.2.5 allows us to prove Theorem 16.2.1. Indeed, we only have to
find a play in the extended game which is λ∗-consistent and with a gain profile
which satisfies the constrained given by the decision problem.

Proof sketch of Theorem 16.2.1. Let (G, v0) = (A, (Gaini)i∈Π, (Fi)i∈Π) be a
reachability game and let (X , x0) = (X, (GainXi )i∈Π, (F

X
i )i∈Π) be its asso-

ciated extended game. The game (X , x0) is built from (G, v0) in time at
most exponential in the number of players and polynomial in the size of the
transition system of A.
The proof will be organized in three steps whose respective proofs will rely
on the previous step(s): (i) given a gain profile p ∈ {0, 1}|Π|, given λk for
some k ∈ N and given some v ∈ V X , we show that we can decide in the
required complexity the existence of a play which is λk-consistent, beginning
in v and with gain profile p; (ii) given λk for some k ∈ N, we show that
the computation of λk+1 can be performed within the required complexity;
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and finally (iii) given x, y ∈ {0, 1}|Π|, we show that the existence of a λ∗-
consistent play beginning in x0 with a gain profile p such that x ≤ p ≤ y can
be decided within the required complexity.

• Proof of (i): Given λk, v ∈ V X and p ∈ {0, 1}|Π|, we want to know
if there exists a play ρ ∈ PlaysX(v) which is λk-consistent and with
gain profile p. If a play ρ is such that GainX(ρ) = p, then for each
i ∈ Π such that pi = 1, the condition of being a λk-consistent play is
satisfied. For those such that pi = 0, for each n ∈ N such that ρn ∈ V X

i ,
GainXi (ρ≥n) = 0 should be greater than λk(ρn). This condition is
satisfied if and only if for each n ∈ N such that ρn ∈ V X

i , λk(ρn) 6= 1.
Thus, we remove from (X , x0) all vertices (and all related edges) v ∈
V X
i such that λk(v) = 1, for each player i such that pi = 0. Then, we

only have to check if there exists a play ρ which begins in v and with
gain profile p in this modified extended reachability game. This can be
done in O(2|Π|·(|V X |+|EX |)) (Lemma 2.2.22), thus this procedure runs
in time at most exponential in the number of players and polynomial
in the size of the transition system of A.

• Proof of (ii): Given λk, we want to compute λk+1. For each v ∈ V X ,
λk+1(v) = maxv′∈Succ(v) min{GainXi (ρ) | ρ ∈ PlaysX(v′) ∧ ρ |= λk}
(by assuming that v ∈ V X

i ). Thus for each v′ ∈ Succ(v), we have
to compute min = min{GainXi (ρ) | ρ ∈ PlaysX(v′) ∧ ρ |= λk}. But
min = 0 if and only if there exists ρ ∈ PlaysX(v′) which is λk-consistent
and such that GainXi (ρ) = 0. Thus for each p ∈ {0, 1}|Π| such that
pi = 0, we use point (i) to decide if min = 0. From that follows a
procedure which runs in O(|V X |·|V X |·2|Π|·2|Π|·(|V X |+|EX |)) (running
time at most exponential in the number of players and polynomial in
the size of the transition system A).

• Proof of (iii): It remains to prove that the existence of a λ∗-consistent
play beginning in x0 with a gain profile p such that x ≤ p ≤ y can be
decided within the required complexity. In order to do so, we evaluate
the complexity to obtain λ∗. First, we build λ0 such that λ0(v) = 0

for all v ∈ V X in O(|V X |) time. Then, we apply point (ii) at most
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|V | · 2|Π| times (by Lemma 16.2.4) to obtain λ∗. Given x, y ∈ {0, 1}|Π|,
we consider each p ∈ {0, 1}|Π| such that x ≤ p ≤ y (at most 2|Π|

such ones) and we use point (i) to check if there exists a play which
begins in x0 with gain profile p and which is λ∗-consistent. This can
be done in running time at most exponential in the number of players
and polynomial in the size of the transition system of A.

We conclude the proof by applying Proposition 16.2.5.





CHAPTER 17

APPLICATION TO TIMED GAMES

In this section, we are interested in models which are enriched with clocks and
clock guards in order to consider time elapsing. Timed automata [AD94] are
well known among such models. We recall some of their classical concepts,
then we explain how (turn-based) timed games derive from timed automata.

17.1 Timed automata and timed games

In this section, we use the following notations. The set C = {c1, . . . , ck} de-
notes a set of k clocks. A clock valuation is a function ν : C → R+. The
set of clock valuations is depicted by CV . Given a clock valuation ν, for
i ∈ {1, . . . , k}, we sometimes write νi instead of ν(ci). Given a clock valuation
ν and d ∈ R+, ν + d denote the clock valuation ν + d : C → R+ such that
(ν + d)(ci) = ν(ci) + d for each ci ∈ C. A guard is any finite conjunctions
of expressions of the form ci � x where ci is a clock, x ∈ N is a natural num-
ber and � is one of the symbols {≤, <,=, >,≥}. We denote by G the set of
guards. Let g be a guard and ν be a clock valuation, notation ν |= g means
that (ν1, . . . , νk) satisfies g. A reset Y ∈ 2C indicates which clocks are reset to
0. We denote by [Y ← 0]ν the valuation ν ′ such that for each c ∈ Y , ν ′(c) = 0

and for each c ∈ C\Y , ν ′(c) = ν(c).

259
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A timed automaton (TA) is a tuple (A, `0) = (Σ, L,→, C) where: (i) Σ

is a finite alphabet; (ii) L is a finite set of locations; (iii) C is a finite set of
clocks; (iv) → ⊆ L×Σ×G× 2C ×L a finite set of transitions; and (v) `0 ∈ L
an initial location. Additionnally, we may equip a timed automaton with a
set of players and partition the locations between them. It results in a players
partitioned timed automaton.

Definition 17.1.1 ((Reachability) Players partitioned timed automa-
ton). A players partioned timed automaton (PPTA) (A, `0) = (Σ, L,→
, C,Π, (Li)i∈Π) is a timed automaton equipped with: (i) Π a finite set of
players and (ii) (Li)i∈Π a partition of the locations between the players.
If (A, `0) is equipped with a target set Goali ⊆ L for each player i ∈ Π, we
call it a reachability PPTA.

The semantic of a timed automaton (A, `0) is given by its associated tran-
sition system TA = (Σ, V, E) where: (i) V = L × CV is a set of vertices of
the form (`, ν) where ` is a location and ν : C → R+ is a clock valuation; and
(ii) E ⊆ V ×Σ× V is such that ((`, ν), a, (`′, ν ′)) ∈ E if (`, a, g, Y, `′) ∈ → for
some g ∈ G and some Y ∈ 2C , and there exists d ∈ R+ such that: (1) for each
x ∈ X\Y : ν ′(x) = ν(x) + d (time elapsing); (2) for each x ∈ Y : ν ′(x) = 0

(clocks resetting); (3) ν + d |= g (respect of the guard).

In the same way, the semantic of a PPTA (A, `0) is given by its associated
game (GA, v0).

Definition 17.1.2 ((Reachability) Timed games GA). Let (A, `0) =

(Σ, L,→, C,Π, (Li)i∈Π) be a PPTA, its associated game (GA, v0) =

(AA, (Gaini)i∈Π), called timed game, is such that: (i) AA =

(Σ, V, E,Π, (Vi)i∈Π) where TA = (Σ, V, E) is the associated transition system
of (A, `0) and, for each i ∈ Π, (`, ν) ∈ Vi if and only if ` ∈ Li; (ii) for each
i ∈ Π, Gaini : PlaysAA → {0, 1} is a gain function; (iii) v0 = (`0,0) where 0

is the clock valuation such that for all c ∈ C, 0(c) = 0.
If (A, `0) is a reachability PPTA, its associated timed game is a reachability
game (GA, v0) = (AA, (Gaini)i∈Π, (Fi)i∈Π) such that for each i ∈ Π, (`, ν) ∈
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Fi if and only if ` ∈ Goali. We call this game a reachability timed game.

Thus, in a timed game, when it is the turn of Player i to play, if the play is
in location `, he has to choose a delay d ∈ R+ and a next location `′ such that
(`, a, g, Y, `′) ∈ → for some a ∈ Σ, g ∈ G and Y ∈ 2C . If the choice of d respects
the guard g, then the choice of Player i is valid: the clock valuation evolves
according to the past clock valuation, d and Y and location `′ is reached. Then,
the play continues.

17.2 Regions and region games

In this section, we consider a bisimulation equivalence on TA (the classical time-
abstract bisimulation from [AD94]) which allows us to solve the constrained
existence in the quotient of the original timed game (the region game). All
along this section we use the following notations. We denote by xi the maxi-
mum value in the guards for clock ci. For all positive number d ∈ R+, bdc is
the integral part of d and d is the fractional part of d.

Definition 17.2.1 (≈ and region).

• Two clock valuations ν and ν ′ are equivalent (written ν ≈ ν ′) iff: (i)
bνic = bν ′ic or νi, ν ′i > xi, for all i ∈ {1, . . . , k}; (ii) νi = 0 iff ν ′i, for
all i ∈ {1, . . . , k} with vi ≤ xi and (iii) νi ≤ νj iff ν ′i ≤ ν ′j for all
i 6= j ∈ {1, . . . , k} with νj ≤ xj and νi ≤ xi.

• We extend the equivalence relation to the states (≈ ⊆ V ×V ) : (`, ν) ≈
(`′, ν ′) iff ` = `′ and ν ≈ ν ′;

• A region r is an equivalence class for some v ∈ V : r = [v]≈.

This equivalence relation on clocks and its extension to states of TA is usual
and the following result is well known [AD94].
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Lemma 17.2.2 ([AD94]). Let (A, `0) be a TA, ≈ ⊆ V ×V is a bisimulation
equivalence on TA.

It means that if (GA, v0) is a (reachability) timed game, ≈ is a bisimulation
equivalence on it. Moreover, it respects the partition. Thus, we can consider
the (reachability) quotient game of this game. We call this game the (reacha-
bility) region game. Notice that ≈ respects the target sets, so the reachability
quotient game is defined as in Definition 16.1.3.

Definition 17.2.3 ((Reachability) region game). Let (GA, v0) be a (reacha-
bility) timed game and ≈ ⊆ V × V be the bisimulation equivalence defined
in Definition 17.2.1, its associated (reachability) region game is its associated
(reachability) quotient game ( ˜̃GA, [v0]).

We recall [AD94] that the size of ˜̃TA, i.e., its number of states (regions)
and edges, is in O((|V | + | → |) · 2|δ(A)|) where δ(A) is the binary encoding
of the constants (guards and costs) appearing in A. Thus | ˜̃TA| is in O(2| A |)

where | A | takes into account the locations, edges and constants of A. From
this follows the following lemma.

Lemma 17.2.4. The (reachability) region game ( ˜̃GA, [v0]) is a finite (reach-
ability) game.

Finally, in light of the construction of the reachability region game, the
bisimulation equivalence ≈ respects the gain functions of the reachability timed
game and of the reachability region game.

Lemma 17.2.5. Given (GA, v0) = (AA, (Gaini)i∈Π, (Fi)i∈Π) be a reachabil-
ity timed game and ( ˜̃GA, [v0]) = ( ˜̃AA, (˜̃gi)i∈Π, (

˜̃Fi)i∈Π) its associated region
game, ≈ respects the gain functions.

Remark 17.2.6. Let A = (Σ, L,→, C) be a timed automaton, TA = (Σ, V, E)
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be its associated transition system and ≈ be the bisimulation equivalence on
TA as defined in Definition 17.2.1, we have that ((`, ν), a, (`′, ν ′)) ∈ E if and
only if there exist g ∈ G, Y ∈ 2C and d ∈ R+ such that (`, a, g, Y, `′) ∈ →,
ν ′ = [Y ← 0](v + d) and v + d |= g. Thus, we abstract the notion of time
elapsing in the edges of the transition system.

Then, since≈ is a bisimulation equivalence on TA, for all ((`1, ν1), a, (`′1, ν
′
1)) ∈

E and for all (`2, ν2) ∈ V such that (`1, ν1) ≈ (`2, ν2), there exists (`′2, ν
′
2) ∈ V

such that ((`2, ν2), a, (`′2, ν
′
2)) ∈ E and (`′1, ν

′
1) ≈ (`′2, ν

′
2). The time elapsing

between ν1 and ν ′1 is not necessarily the same as between ν2 and ν ′2. Thus, ≈
is a timed abstract bisimulation in the classical way [AD94].

17.3 Complexity results

Theorem 17.3.1. Given a reachability PPTA (A, `0) and x, y ∈ {0, 1}|Π|,
the constrained existence problem in reachability timed games is EXPTIME-
complete.

The EXPTIME-hardness is due to a reduction from countdown games and
is inspired by the one provided in [Bre12, Section 6.3.3]. Thus, we only
prove the EXPTIME-easiness and provide a proof sketch for the EXPTIME-
hardness.

EXPTIME-easiness. Given a PPTA (A, `0) with target sets (Goali)i∈Π and
given x, y ∈ {0, 1}|Π|. Thanks to Theorem 15.3.1, it is equivalent to solve this
problem in the reachability region game. Moreover, the size of the reachabil-
ity region game is exponential, because its transition system ˜̃TA is exponential
in the size of A, but not in the number of players. Then, since the reachabil-
ity region game is a finite reachability game (Lemma 17.2.4), we can apply
Theorem 16.2.1. It causes an exponential blow-up in the number of players
but is polynomial in the size of transition system ˜̃TA. Thus, this entire pro-
cedure runs in (simple) exponential time in the size of the PPTA (A, `0) .
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EXPTIME-hardness (Proof sketch). In [Bre12], Proposition 6.12 asserts that
the value problem for timed games with Büchi objectives and only two clocks
is EXPTIME-hard. The proof relies on the notion of countdown game [JLS07]
which is known to be EXPTIME-complete. When reading the proof of the
latter proposition, one can easily be convinced that it is also proved that
the value problem for timed games with reachability objectives and only two
clocks is EXPTIME-hard. Indeed, the only accepting state is a deadlock
with a self-loop (named w∃). Moreover, one can also notice that although
the results of [Bre12] concern concurrent games, the proof of [Bre12, Propo-
sition 6.12] relies on turn-based games.
The proof of Proposition 6.12 can be slightly modified in order to prove that
the constrained existence problem in reachability timed games is EXPTIME-
hard with two clocks. The problem in the original proof beeing that Adam
does not have a reachability, but a safety objective. Given a countdown game
C, we build a reachability timed games by using nearly the same construction
as the one presented in the proof of [Bre12, Proposition 6.12]. The difference
are the following ones.

• We replace all the guards y 6= c0 by the guards y < c0.

• We add a winning state for Adam w∀.

• From every state belonging to Eve, we add a transition to w∀ with
guard x = 0 ∧ y > c0.

The proposed transformations does not really affect the behaviors of the
timed game, in the sense that it still bisimulates closely the countdown game.
The only difference is discussed below. In the original encoding, Eve was win-
ning if and only if she is able to reach w∃. This could happen only when the
clock y is equal to c0. As the game is zero-sum, Adam was winning when w∃
is never reached. In practice, as the timed game of the encoding is strongly
non-zeno, in every winning play of Adam, the clock value y eventually over-
takes c0. In our new encoding, every winning play of Adam ends up in w∀.
That is the only difference. This is important, as we can now see the timed
game as a reachability timed game where both players have a reachability
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objective. One can be convinced that Eve as a winning strategy (in the origi-
nal timed game proposed in [Bre12]) if and only if there exists an SPE where
only Eve achieves her objective (in the variant of the timed game proposed
above).

Notice that, since there always exists an SPE in a finite reachability game
[Umm06], there always exists an SPE in the region game and so in the reach-
ability timed game (Theorem 15.3.1).

17.4 Discussion and future works

In this part, we focus on (qualitative) reachability timed games, and ignore
the effect of Zeno behaviors1. Nevertheless we believe that our approach is
rather robust and can be extended to richer objectives and take into account
Zeno behaviors. In the following paragraphs, we try to briefly explain how this
could be achieved.

Time-bounded reachability. A natural extension of our framework would
be to equip the objective of each player with a time-bound. Player i aims at
visiting Fi within TBi time units. We believe that this time-bound variant
of our constrained problem is decidable. Indeed, for each player, his time-
bound reachability objective can easily be encoded via a deterministic timed
automaton (on finite timed words) Ai. Given a timed game Gb equipped with
a timed-bounded objective for each player (described via Ai), we could, via
standard product construction build a new reachability timed game (without
time-bound) G. Solving the constrained existence problem (with time-bound)
in Gb is equivalent to solving the constrained existence problem (of Defini-
tion 14.0.4) in G (the constrained being encoded in the Ai’s). This approach
could extend to any property that can be expressed via a deterministic timed
automaton.

1 A run ρ = (`0, ν0)
d1,a1−−−→ (`1, ν1)

d2,a2−−−→ . . . in a timed automaton is said timed-divergent
if the sequence (

∑
j≤i dj)i diverges. A timed automaton is non-Zeno if any finite run can

be extended into a time-divergent run [BFL+18].
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Towards ω-regular objectives. Let us briefly explain how our approach
could be adapted to prove the decidability of the constrained existence problem
for timed games with ω-regular objectives. For the sake of clarity, we here
focus on parity objectives. First, let us notice that the results of Chapter 15
(including Theorem 15.3.1) apply to a general class of games, including infinite
games with classical ω-regular objectives such as parity. An algorithm to decide
the constrained existence problem (Definition 14.0.4) on parity on finite games
can be found in [Umm06] via translation into tree automata. Equipped with
these two tools, we believe that we could adapt the definitions and results of
Chapter 17 to obtain the decidability of the constrained existence problem for
parity timed games. Notice that, in order to obtain our complexity results for
finite reachability games, we use other simpler tools than tree automata.

About Zenoness. In the present document, we allow a player to win (or
to prevent other players to win) even if his strategy is responsible of Zeno
behaviors. In [dAFH+03], the authors propose an elegant approach to blame
a player that would prevent divergence of time. The main idea is to transform
the ω-regular objective of each player into another one which will make him
lose if he blocks the time. We believe that this idea could be exploited in our
framework in order to prevent from winning a “blocking time player”.
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Let us conclude this document with a brief discussion about some potential
future works.

About discounted-sum games In Section 7, we have provided a character-
ization of outcomes of weak SPEs that can be applied to games which respect
some properties. We have instantiated this characterization to multiplayer
Boolean games with prefix-independent gain functions, multiplayer qualitative
and quantitative Reachability games and multiplayer Safety games.

One can wonder if this characterization may be instantiated to multiplayer
discounted-sum games. Indeed, a discounted-sum objective is strongly prefix-
linear and thus at least one of the properties required by the characterization
is satisfied. Moreover, the continuity of the objective functions should make
possible to prove the maxima existence property referred to in the statement
of the characterization.

This would be particularly interesting as it would also imply a characteriza-
tion of outcomes of SPEs since the notions of weak SPE and SPE are equivalent
when the objective functions are continuous.

Nevertheless, let us mention that, concerning multiplayer discounted-sum
games, the constrained existence problem of equilibria is closely related to the
target discounted-sum problem. This problem is still an open problem. More
details about this problem are provided in [Bru17].

Other kinds of considered equilibria, relevant equilibria or objectives
In this thesis, we have mainly focused on weak SPEs (and SPEs). In the same
way the characterization of NEs has been adapted to secure equilibria in two
player games [BMR14], we can wonder whether it is possible to adapt our
characterization of weak SPE (resp. SPE) to some variants of secure equilibria
or other notion of equilibrium. Notice that subgame perfect secure equilibria
has already been studied in [De 13].

Concerning the existence of relevant equilibria, we have principally consid-
ered the constrained existence problem. We have also studied some variants in
Reachability games: the social welfare decision problem and the Pareto opti-
mal decision problem. We could consider these two variants on other kinds of
games than Reachability games. We could also wonder whether other types of
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relevant, more ad hoc, equilibria could be considered depending on the nature
of the considered game, e.g., relevant equilibria that takes into account the
time aspect in multiplayer timed games.

In this document, the objective functions of our interest were classical
prefix-independent qualitative objective (Büchi, co-Büchi, Parity, . . .), qual-
itative and quantitative Reachability objectives and Safety objectives. One
can be interested in considering other objective functions. For example, one
may consider multi-objectives [Ran14]: each player has several objectives that
he wants to satisfy.

Beyond determinism In this thesis, we consider multiplayer games without
probability distributions on the edges of the game graph: if a player chooses to
go in vertex v, he is sure that he will reach vertex v. A potential future work
could be to consider stochastic games and to wonder how a characterization of
equilibria in such a setting may be designed.

Another potential direction is to consider multi-strategies. In the classical
definition of strategy, a strategy of a player is a function that assigns exactly
one next vertex to each history in the game graph. In [BMOU11], authors
consider the notion of multi-strategy to deal with the error-prone nature of
computer systems. A multi-strategy of a player is a function that assigns a set
of next vertices to each history in the game graph. In a prospective perspective,
in order to solve problems related to the existence of equilibria in this setting,
one can consider how equilibrium outcome characterizations, in the same spirit
of those developped in this thesis, may be obtained and used with respect to
the notion of multi-strategy.

Towards effective algorithms In this thesis, our results are of theoretical
nature, hence a natural question arises: “How can we design effective algorithms
to find relevant equibria in games?”. If we want to directly exploit the equilibria
outcomes characterizations, we should compute the values of some labeling
function λ and then find a λ-consistent play. The algorithms presented in
the previous chapters (in order to obtain the complexity results) compute the
values of the labeling function λ, globally, in a monolithic fashion. One could
wonder whether, the computation of λ can be done more locally. For instance,
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one could decompose the game graph into strongly connected components,
compute λ in each component, hoping that the global λ could be recovered
from these local informations. One could also abandon exact algorithms, and
consider metaheuristics in order to find quickly a relevant λ-consistent play in
the game.

Multiplayer timed games Up to our knowledge, few results are known
about multiplayer timed games ([Bre12, BRS17]), it seems to be a promising
direction for future works. In Section 17, we provide some potential future
works directly related to the results presented in Part IV.
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APPENDIX A

CHARACTERIZATION OF THE GAIN PROFILES OF
WEAK SPES IN MULTIPLAYER GAMES WITH

PREFIX-INDEPENDENT QUALITATIVE OBJECTIVES

In this appendix, we provide a characterization of weak SPEs in multiplayer
games with prefix-independent qualitive objectives. Contrary to the charac-
terizations provided in Part II, this one is based on the gain profiles realizable
by a weak SPE in the game. Initially, this approach allowed us to obtain the
results presented in [BBGR18].

We choose to present these other characterizations and related results as
they were presented in [BBGR18] even if it seems quite redundant with some
notions already introduced in Part II. Notice that the notion of good symbolic
witness is slightly different of that provided in Section 7.2 since in this ap-
pendix we only consider Boolean games with prefix-independent objectives.

In this section our aim is twofold: first, we characterize the set of possible
gain profiles of weak SPEs and second, we show how it is possible to build a
weak SPE given a set of lassoes with some “good properties". Those character-
izations work for Boolean games with prefix-independent gain functions. We
make this hypothesis all along Appendix A.
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A.1 Remove-Adjust procedure

Let (G, v0) be an initialized Boolean game with prefix-independent gain func-
tions. The computation of the set of all the gain profiles of weak SPEs in
(G, v0) is inspired by a fixpoint procedure explained in [BRPR17]. Each vertex
v is labeled by a set of gain profiles p ∈ {0, 1}|Π|. Initially, these gain profiles
are those for which there exists a play in Plays(v) with gain profile p. Then
step by step, some gain profiles are removed for the labeling of v as soon as we
are sure they cannot be the gain profile of σ�h in a subgame (G�h, v) for some
weak SPE σ.1 When a fixpoint is reached, the labeling of the initial vertex v0

exactly contains all the gain profiles of weak SPEs in (G, v0). Hence, at each
step of this procedure, the gain profiles labeling a vertex v are gain profiles
of potential subgame outcomes of a weak SPE. Their number decreases until
reaching a fixpoint.

We formally proceed as follows. For all v ∈ V , we define the initial labeling
of v as:

P0(v) = {p ∈ {0, 1}|Π| | there exists ρ ∈ Plays(v) such that Gain(ρ) = p}.

Then for each step k ∈ N \ {0}, we compute the set Pk(v) by alternating
between two operations: Remove and Adjust. To this end, we need to intro-
duce the notion of (p, k)-labeled play. Let p be a gain profile and k be a step,
a play ρ = ρ0ρ1ρ2 . . . is (p, k)-labeled if for all j ∈ N we have p ∈ Pk(ρj), that
is, ρ visits only vertices that are labeled by p at step k. We first give some
intuition about the Remove-Adjust procedure and then give the definition.

We start with the Remove operation. Let p that labels vertex v. This
means that it is the gain profile of a potential subgame outcome of a weak
SPE that starts in v. Suppose that v is a vertex of Player i and v has a
successor v′ such that pi < p′i for all p

′ labeling v′. Then p cannot be the gain
profile of σ�h in the subgame (G�h, v) for some weak SPE σ and some history
h, otherwise Player i would have a profitable (one-shot) deviation by moving
from v to v′ in this subgame.

1The value of h is not important since the gain functions are prefix independent. This is
why we only focus on v and not on hv.
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Let us now explain the Adjust operation. It may happen that for another
vertex u having p in its labeling, all potential subgame outcomes of a weak SPE
from u with gain profile p necessarily visit vertex v. As p has been removed
from the labeling of v, these potential plays do no longer survive and p is also
removed from the labeling of u by the Adjust operation.

Let us now formally define the Remove-Adjust procedure.

Definition A.1.1 (Remove-Adjust procedure). Let k ∈ N \ {0}.

• If k is odd, process the Remove operation:

– If for some v ∈ Vi there exists p ∈ Pk−1(v) and v′ ∈ Succ(v) such
that pi < p′i for all p

′ ∈ Pk−1(v′), then Pk(v) = Pk−1(v)\{p} and
for all u 6= v, Pk(u) = Pk−1(u).

– If such a vertex v does not exist, then Pk(u) = Pk−1(u) for all
u ∈ V .

• If k is even, process the Adjust operation:

– If some gain profile p was removed from Pk−2(v) (that is,
Pk−1(v) = Pk−2(v) \ {p}), then

∗ For all u ∈ V such that p ∈ Pk−1(u), check whether there
still exists a (p, k− 1)-labeled play with gain profile p from u.
If it is the case, then Pk(u) = Pk−1(u), otherwise Pk(u) =

Pk−1(u) \ {p}.
∗ For all u ∈ V such that p /∈ Pk−1(u): Pk(u) = Pk−1(u).

– Otherwise Pk(u) = Pk−1(u) for all u ∈ V .

We can state the existence of a fixpoint of the sequences (Pk(v))k∈N, v ∈ V ,
in the following meaning:

Proposition A.1.2 (Existence of a fixpoint). There exists an even natural
number k∗ ∈ N such that for all v ∈ V , Pk∗(v) = Pk∗+1(v) = Pk∗+2(v).
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Proof. For all v ∈ V , the sequence (Pk(v))k∈N is nonincreasing because the
Remove and Ajdust operations never add a new gain profile. As each P0(v)

is finite (it contains at most 2|Π| gain profiles), there exists a natural odd
number k∗+1 such that for all v ∈ V , Pk∗(v) = Pk∗+1(v) during the Remove
operation, and thus for all v ∈ V , Pk∗+1(v) = Pk∗+2(v) during the Adjust
operation.

Example A.1.3. We illustrate the different steps of the Remove-Adjust pro-
cedure on the example depicted in Figure 7.2, and we display the result of this
computation in Table A.1. Initially, the sets P0(v), v ∈ V , contains all gain
profiles p such that there exists a play ρ ∈ Plays(v) with Gain(ρ) = p. At
step k = 1, we apply a Remove operation to v = v4 (this is the only possible
v): v is a vertex of Player i = 2 and v has a successor v′ = v5 such that
(0, 1) ∈ P0(v5). Therefore (0, 0) is removed from P0(v4) to get P1(v4). By
definition of the Remove operation, the other sets P0(u) are not modified and
are thus equal to P1(u). At step k = 2, we apply an Adjust operation. The
only way to obtain the gain profile (0, 0) from v0 is by visiting v4 with the play
v0v4v

ω
6 . As there does not exist a ((0, 0), 1)-labeled play with gain profile (0, 0)

anymore, we have to remove (0, 0) from P1(v0). The other sets P1(v) remain
unchanged. At step k = 3, the Remove operation removes gain profile (1, 0)

from P2(v0) due to the unique gain profile (0, 1) in P2(v4). At step k = 4,
the Adjust operation leaves all sets P3(v) unchanged. Finally at step k = 5,
the Remove operation also leaves all sets P4(v) unchanged, and the fixpoint is
reached. Therefore, we have k∗ = 4.

Table A.1: Computation of the fixpoint on the example of Figure 7.2

v0 v1 v2 v3 v4 v5 v6

P0(v) {(0, 0), (1, 0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0,0), (0, 1)} {(0, 1)} {(0, 0)}
P1(v) {(0,0), (1, 0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
P2(v) {(1,0), (0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
P3(v) {(0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
P4(v) {(0, 1)} {(1, 0), (0, 1)} {(1, 0), (0, 1)} {(0, 1)} {(0, 1)} {(0, 1)} {(0, 0)}
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A.2 Characterization and good symbolic witness

The fixpoint Pk∗(v), v ∈ V , provides a characterization of the gain profiles
of all weak SPEs as described in the following theorem. This result is in the
spirit of the classical Folk Theorem which characterizes the gain profiles of all
NEs in infinitely repeated games (see for instance [OR94]).

Theorem A.2.1 (Characterization). Let (G, v0) be an initialized Boolean
game with prefix-independent gain functions. Then there exists a weak SPE
σ with gain profile p0 in (G, v0) if and only if p0 ∈ Pk∗(v0).a

aWe use notation p0 ∈ {0, 1}|Π| to highlight that this is the gain profile of σ from vertex
v0. It should not be confused with any component pi, i ∈ Π, of a gain profile p.

The rest of this section is devoted to the proof of Theorem A.2.1. We begin
with a lemma that states that if a given gain profile p survives at step k (where
k is even) in the labeling of v, this means that there exists a play with gain
profile p from v that only visits vertices also labeled by p.

Lemma A.2.2. For all even k and in particular for k = k∗, p belongs to
Pk(v) if and only if there exists a (p, k)-labeled play ρ ∈ Plays(v) such that
Gain(ρ) = p.

Proof. (⇐) Suppose that there exists a (p, k)-labeled play ρ = ρ0ρ1 . . . ∈
Plays(v) such that Gain(ρ) = p. By definition of a (p, k)-labeled play, we
have p ∈ Pk(ρj) for all j, and so in particular for j = 0.
(⇒) Let us prove that if p belongs to Pk(v), then there exists a (p, k)-labeled
play ρ ∈ Plays(v) such that Gain(ρ) = p. We proceed by induction on k. For
k = 0, the assertion is satisfied by definition of P0(v) and because Gaini is
prefix-independent for all i ∈ Π.
Suppose that the assertion is true for an even k and let us prove that it
remains true for k + 2. Let p ∈ Pk+2(v). As Pk+2(v) ⊆ Pk+1(v) ⊆ Pk(v),
we have p ∈ Pk(v) and there exists a (p, k)-labeled play ρ ∈ Plays(v) such



292
Chapter A – Characterization of The Gain Profiles of weak SPEs in
Multiplayer Games with Prefix-Independent Qualitative Objectives

that Gain(ρ) = p by induction hypothesis. In other words p ∈ Pk(ρj) for all
j.
We suppose that there exists v′ such that Pk+2(v′) 6= Pk(v

′) (the fixpoint
is not reached), otherwise p ∈ Pk+2(ρj) for all j and ρ is also a (p, k + 2)-
labeled play. Therefore the Remove operation has removed some gain profile
p′ from one Pk(v

′) and the Adjust operation has possibly removed p′ from
some other Pk(u). If p′ 6= p, then clearly p still belongs to each Pk+2(ρj) and
ρ is again a (p, k + 2)-labeled play. If p′ = p, then v′ 6= v since p ∈ Pk+2(v)

by hypothesis. Moreover, by the Adjust operation, this means that there
exists a (p, k + 1)-labeled play π = π0π1 . . . with gain profile p from v which
never visits v′. Let us show that π is also a (p, k + 2)-labeled play, that is,
p ∈ Pk+2(πj) for all j. Each suffix πjπj+1 . . . of π is a (p, k+ 1)-labeled play
with gain profile p thanks to prefix-independence of Gain. By the Adjust
operation, it follows that Pk+2(πj) = Pk+1(πj) for all j. This concludes the
proof.

The proof of Theorem A.2.1 uses the concept of (good) symbolic witness
defined hereafter but we begin with some intuition about it.

A symbolic witness P is a compact representation of some finite-memory
strategy profile σ in (G, v0). It is a finite set of lassoes that represent some
subgame outcomes of σ: the lasso ρ(0,v0) of P represents the outcome 〈σ〉v0 ,
and each other lasso ρ(i,v′) represents the subgame outcome 〈σ�h〉v′ for some
particular histories hv′ ∈ Hist(v0). The index i records that Player i can move
from v (the last vertex of h) to v′ (with the convention that i = 0 for the
outcome 〈σ〉v0). When σ is a weak SPE, the related symbolic witness P is
good, that is, its lassoes avoid profitable one-shot deviations between them.

Let us now define it properly.

Definition A.2.3 (Symbolic witness). Let (G, v0) be an initialized Boolean
game with prefix-independent gain functions. Let I ⊆ (Π ∪ {0})× V be the
set

I ={(0, v0)} ∪
{(i, v′) | there exists (v, v′) ∈ E such that v, v′ ∈ Succ∗(v0) and v ∈ Vi}.
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A symbolic witness is a set P = {ρi,v | (i, v) ∈ I} such that each ρ(i,v) ∈ P
is a lasso in A with First(ρ(i,v)) = v and with length bounded by 2 · |V |2.

A symbolic witness has thus at most |V | · |Π| + 1 lassoes (by definition of
I) with polynomial length.

Definition A.2.4 (Good symbolic witness). A symbolic witness P is good
if for all ρ(j,u), ρ(i,v′) ∈ P, for all vertices v ∈ ρ(j,u) such that v ∈ Vi and
v′ ∈ Succ(v), we have Gaini(ρ

(j,u)) ≥ Gaini(ρ
(i,v′)).

The condition of Definition A.2.4 is depicted in Figure A.1.

u . . . v

∈ Vi

v′ . . . . . . ρi,v′

. . . . . . ρj,u

Figure A.1: The condition of Definition A.2.4

Example A.2.5. A good symbolic witness for the weak SPE of Example 2.4.19
depicted in Figure 7.2 is already given in Example 7.4.4.

In Proposition A.2.6 below, we are going to prove that there exists a weak
SPE if and only if there exists a good symbolic witness representing a finite-
memory weak SPE with the same gain profile, and that the existence of this
witness is equivalent to the non-emptiness of the fixpointPk∗(v), v ∈ V . In this
way, we will prove Theorem A.2.1. We will see that the lassoes ρi,v of a good
symbolic witness can be constructed from (p, k∗)-labeled plays for well-chosen
gain profiles p ∈ Pk∗(v).

Notice that in the second assertion of Proposition A.2.6, we not only ask
that p0 ∈ Pk∗(v0) (as in Theorem A.2.1) but also that Pk∗(v) 6= ∅ for all
v ∈ Succ∗(v0). We will come back to this observation when we will prove
Theorem A.2.1.
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Proposition A.2.6. Let (G, v0) be an initialized Boolean game with prefix-
independent gain functions. The following assertions are equivalent:

1. There exists a weak SPE with gain profile p0 in (G, v0);

2. Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0) and p0 ∈ Pk∗(v0);

3. There exists a good symbolic witness P that contains a lasso ρ(0,v0) with
gain profile p0;

4. There exists a finite-memory weak SPE σ with gain profile p0 in (G, v0)

such that the size of each strategy σi is in O(|V |3 · |Π|).

Proof. We prove that 1⇒ 2⇒ 3⇒ 4⇒ 1.
(1 ⇒ 2) Suppose that there exists a weak SPE σ with gain profile p0 in
(G, v0). To show that Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0), let us prove by
induction on k that

Gain(〈σ�h〉v) ∈ Pk(v) for all hv ∈ Hist(v0). (A.1)

For case k = 0, this is true by definition of P0(v). Suppose that this assertion
is satisfied for an even k. Let us prove that it remains true for k + 2 by
showing that gain profile p = Gain(〈σ�h〉v) ∈ Pk(v) can be removed neither
from Pk(v) at step k + 1, nor from Pk+1(v) at step k + 2.

• Gain profile p cannot be removed from Pk(v) by the Remove operation
at step k + 1. Otherwise, if v ∈ Vi, this means that there exists v′ ∈
Succ(v) such that

∀p′ ∈ Pk(v
′), pi < p′i. (A.2)

By induction hypothesis,

Gain(〈σ�hv〉v′) ∈ Pk(v
′). (A.3)

To get a contradiction, we prove that in the subgame (G�h, v) there
exists a one-shot deviating strategy σ′i from σi�h that is a profitable
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deviation for Player i. We define σ′i that only differs from σi�h on v:
σ′i(v) = v′. Therefore we get Gain(h〈σ′i, σ−i�h〉v) = Gain(hv〈σ�hv〉v′).
It follows by (A.2), (A.3), and prefix-independence of Gaini that
Gaini(h〈σ�h〉v) = pi < p′i = Gaini(hv〈σ�hv〉v′) = Gain(h〈σ′i, σ−i�h〉v).
This is impossible since σ is a weak SPE.

• Gain profile p cannot be removed from Pk+1(v) by the Adjust operation
at step k + 2. Otherwise, this means that there exists u such that
Pk+1(u) = Pk(u) \ {p} (by the Remove operation at step k + 1) and
there is no (p, k + 1)-labeled play with gain profile p from v. However
by Lemma A.2.2, as p ∈ Pk(v), there exists a (p, k)-labeled play π with
gain profile p from v. This means that π visit u. Let h′u ∈ Hist(v)

such that h′u < π. Then we get a contradiction with σ being a weak
SPE if we repeat the argument done before in the previous item for u
and the subgame (G�hh′ , u) (instead of v and (G�h, v)).

Now that we know that Pk∗(v) 6= ∅ for all v ∈ Succ∗(v0), it remains to prove
that p0 ∈ Pk∗(v0). By (A.1), we have p0 = Gain(〈σ〉v0) ∈ Pk∗(v0).
(2 ⇒ 3) Let us show how to build a good symbolic witness P from the
non-empty fixpoint Pk∗(v), v ∈ V . First recall that if p ∈ Pk∗(v), then
by Lemma A.2.2 there exists a (p, k∗)-labeled play with gain profile p from
v. Notice that such a play can be supposed to be a lasso with length at
most 2 · |V |2. Indeed it is proved in [BBMU15, Proposition 3.1] that given
a play ρ, one can construct a lasso ρ′ of length bounded by 2 · |V |2 such
that First(ρ) = First(ρ′), Occ(ρ) = Occ(ρ′), and Inf(ρ) = Inf(ρ′) (this con-
struction eliminates some cycles of ρ in a clever way). Therefore, if ρ is a
(p, k∗)-labeled play with gain profile p from v, the lasso ρ′ is also a (p, k∗)-
labeled play with gain profile p from v. The required set P will be composed
of some of these lassoes.
We start with P = ∅. As p0 ∈ Pk∗(v0), then there exists a (p0, k

∗)-labeled
lasso ρ(0,v0) with gain profile p0 from v0 that we add to P. For all v, v′ ∈
Succ∗(v0) such that v ∈ Vi and v′ ∈ Succ(v), let p′ be a gain profile in Pk∗(v

′)

such that

p′i = Min{qi | q ∈ Pk∗(v
′)}. (A.4)
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This gain profile exists since Pk∗(v
′) 6= ∅ by hypothesis. Then there exists a

(p′, k∗)-labeled lasso ρ(i,v′) with gain profile p′ from v′ that we add to P.
This set P is a symbolic witness by construction. It remains to prove that it
is good. Let v ∈ ρ(j,u) such that v ∈ Vi and ρ(j,u) ∈ P. As ρ(j,u) is a (p, k∗)-
labeled lasso for some gain profile p, we have p ∈ Pk∗(v). Furthermore, as
Pk∗(v) = Pk∗+1(v) (by the fixpoint), this means that p was not removed from
Pk∗(v) by the Remove operation at step k∗. In particular, by definition of
the gain profile p′ of ρi,v′ (see (A.4)), we have pi ≥ p′i, that is Gaini(ρ

(j,u)) ≥
Gaini(ρ

(i,v′)). This shows that P is a good symbolic witness.

(3⇒ 4) Let P = {ρ(i,v) | (i, v) ∈ I} be a good symbolic witness that contains
a lasso ρ(0,v0) with gain profile p0. We define a strategy profile σ step by step
by induction on the subgames of (G, v0). We first partially build σ such that
〈σ〉v0 = ρ0,v0 . Consider next hvv′ ∈ Hist(v0) with v ∈ Vi such that 〈σ�h〉v is
already built but not 〈σ�hv〉v′ . Then we extend the definition of σ such that

〈σ�hv〉v′ = ρ(i,v′). (A.5)

Notice that 〈σ�h〉v being already built means that there exists h′ ≤ h and
(j, u) ∈ I such that

h′〈σ�h′〉u = h′ρ(j,u) = h〈σ�h〉v. (A.6)

Let us prove that σ is a very weak SPE (and so a weak SPE by Propo-
sition 2.4.18). Consider the subgame (G�h, v) and the one-shot deviating
strategy σ′i from σi�h such that σ′i(v) = v′. We have to prove that

Gaini(h〈σ�h〉v) ≥ Gaini(hv〈σ�hv〉v′). (A.7)

By (A.5), (A.6), and prefix independence of Gaini, we have

Gaini(hv〈σ�hv〉v′) = Gaini(ρ
(i,v′)),

Gaini(h〈σ�h〉v) = Gaini(ρ
(j,u)).

Inequality (A.7) follows from these equalities and the fact that P is a good
symbolic witness (see Figure 7.1).
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Notice that σ has gain profile p0 by construction (ρ(0,v0) has gain profile p0).
It remains to show that σ is finite-memory. Having (j, u) in memory (the last
deviating player j and the vertex u where he moved), the Moore machines
Mi, i ∈ Π, representing each strategy σi, have to produce together the lasso
ρ(j,u) of length bounded by 2 · |V |2. As |P| = | I | ≤ |V | · |Π|+ 1, the size of
each σi is in O(|Π| · |V |3).
(4⇒ 1) This implication is obvious.

We are now able to prove Theorem A.2.6.

Proof of Theorem A.2.1. If there exists a weak SPE with gain profile p0 in
(G, v0), then p0 ∈ Pk∗(v0) by Proposition A.2.6. It is proved in [BRPR17]
that each initialized game with prefix-independent gain fonctions always has a
weak SPE. Therefore Pk∗(v) 6= ∅ for each v ∈ Succ∗(v0) by Proposition A.2.6.
The latter assertion together with the assertion that p0 ∈ Pk∗(v0) implies the
existence of a weak SPE with gain profile p0 in (G, v0).





APPENDIX B

TECHNICAL PROOFS

In this Appendix, we provide some of the proofs of Part III and Part IV.

B.1 Proofs of Chapter 11

B.1.1 Proofs of Section 11.1.2

Proof of Proposition 11.1.7

To prove Proposition 11.1.7, we have to prove that the sequences (λk(v))k∈N,
with v ∈ V X , are non increasing.

Lemma B.1.1. For all v ∈ V X , the sequences (λk(v))k∈N and (Λk(v))k∈N

are non increasing.

Proof. Let us prove by induction on k that for all v ∈ V X

λk+1(v) ≤ λk(v). (B.1)

We will get that Λk+1(v) ⊆ Λk(v).
First, recall that λk(v) = 0 if and only if i ∈ I(v), where i is the player owning
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v. So, in this case, λk+1(v) = λk(v) = 0 and assertion (B.1) is proved. It
remains to prove this assertion when i 6∈ I(v).
For k = 0, let v ∈ V X

i such that i 6∈ I(v), then λ0(v) = +∞ and obviously
λ1(v) ≤ λ0(v).

Suppose that assertion (B.1) is true for k and let us prove it for k + 1. We
know by induction hypothesis that for all v′ ∈ V X , λk+1(v′) ≤ λk(v′), and
thus also

Λk+1(v′) ⊆ Λk(v′). (B.2)

Let us prove that for all v ∈ V X
i such that i 6∈ I(v), λk+2(v) ≤ λk+1(v). If

λk+2(v) = λk+1(v) or λk+1(v) = +∞, then the assertion is proved. Other-
wise,

λk+1(v) = 1 + min
(v,v′)∈EX

sup{Costi(ρ) | ρ ∈ Λk(v′)}.

By (B.2), it follows that

λk+1(v) ≥ 1 + min
(v,v′)∈EX

sup{Costi(ρ) | ρ ∈ Λk+1(v′)} = λk+2(v).

And so, the assertion again holds.

We can now prove Proposition 11.1.7.

Proof of Proposition 11.1.7. The base case is easily proved. Indeed, as V JN

is a bottom region, we have λ1(v) = λ0(v) for all v ∈ V JN , and thus the local
fixpoint is immediately reached on V JN . Hence with k∗N = 0, for all m ∈ N
and all v ∈ V JN , λk∗N+m(v) = λk

∗
N (v).

Let Jn be an element of I, with n ∈ {1, . . . , N − 1}. Suppose that a fixpoint
has been reached in the arena X≥Jn+1 and that the labeling function λk

is udpated on the arena X≥Jn as described in Definition 11.1.5. Recall (as
already summarized in Lemma 11.1.8) that the previously computed values of
λk do no longer change onX≥Jn+1 (a local fixpoint is reached) and they do not
change outside of V ≥Jn (by construction). However they can be modified on
XJn . In this region XJn , there are |V | sequences (λk(v))k∈N, v ∈ V Jn , since
the vertices v are of the form v = (u, Jn) where Jn is fixed. These sequences
are non increasing by Lemma B.1.1. As the component-wise ordering over
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(N∪{+∞})|V | is a well-quasi-ordering, there exists a natural number k∗n that
we choose as small as possible such that for all v ∈ V Jn , λk∗n+1(v) = λk

∗
n(v).

This equality also holds for all v ∈ V ≥Jn (and not only for V Jn), and it
follows that for all m ∈ N and all v ∈ V ≥Jn , λk∗n+m(v) = λk

∗
n(v).

Notice that when n is decremented in Algorithm 4, k is incremented at least
once showing that the sequence 0 < k∗N < k∗N−1 < . . . < k∗1 = k∗ is strictly
increasing.
Finally, the last arena processed by the algorithm is X≥J1 = X. So with
k∗ = k∗1, we have that for all v ∈ V and all m ∈ N, λk∗+m(v) = λk

∗
(v).

Proof of Proposition 11.1.10

Proof of Proposition 11.1.10. We assume that sup{Costi(ρ) | ρ ∈ Λk(v)} =

+∞, that is, for all n ∈ N, there exists ρn ∈ Λk(v) such that Costi(ρ
n) > n.

By König’s lemma, there exist (ρn`)`∈N a subsequence of (ρn)n∈N and ρ ∈
PlaysX(v) such that ρ = lim`→+∞ ρ

n` . Moreover, Costi(ρ) = +∞ as Costi

is a continuous function. Let us prove that

ρ ∈ Λk(v).

This will establish Proposition 11.1.10.
We prove by induction on t with 0 ≤ t ≤ k that ρ ∈ Λt(v). If t = 0, then
Λ0(v) = PlaysX(v) by Lemma 11.1.4. As ρ = lim`→+∞ ρ

n` ∈ PlaysX(v), it
follows that ρ ∈ Λ0(v).
Let t > 0 and assume that the assertion is true for t − 1 < k. Suppose
by contradiction that ρ 6∈ Λt(v). For all ` ∈ N, as ρn` ∈ Λk(v), we have
ρn` ∈ Λt(v) by Lemma B.1.1. Moreover by induction hypothesis we have
ρ ∈ Λt−1(v). From ρ ∈ Λt−1(v) \ Λt(v), it follows that there exists m ∈ N
and j ∈ Π with ρm ∈ Vj such that

Costj(ρ≥m) > λt(ρm) and Costj(ρ≥m) ≤ λt−1(ρm).

In particular, λt(ρm) < λt−1(ρm) and thus λt(ρm) < +∞, and player j does
not reach his target set along π = ρ0 . . . ρm . . . ρm+λt(ρm). We choose n` large
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enough such that ρ and ρn` share a common prefix of length at least |π|.
As Costj(ρ≥m) > λt(ρm), it follows that Costj(ρ

`n
≥m) > λt(ρm). We can

conclude that ρn` 6∈ Λt(v) which leads to a contradiction.

Proof of Theorem 11.1.9

The two implications of Theorem 11.1.9 are proved in the following Proposi-
tions B.1.2 and B.1.3. Notice that in Proposition B.1.2, we derive the addi-
tional property that Λ∗(v) 6= ∅, for all v ∈ Succ∗(x0). This is necessary to
prove Proposition B.1.3.

Proposition B.1.2. If σ is an SPE in (X , x0) then for all v ∈ Succ∗(x0),
Λ∗(v) 6= ∅ and 〈σ〉x0 ∈ Λ∗(x0).

Proof. Suppose that σ is an SPE in (X , x0) and let us prove by induction on
k that for all k ∈ N and all hv ∈ HistX(x0),

〈σ�h〉v ∈ Λk(v).

For case k = 0, this is true by definition of Λ0(v) and Lemma 11.1.4.
Suppose that this assertion is satisfied for k ≥ 0 and by contradiction, assume
that there exists hv ∈ HistX(x0) such that 〈σ�h〉v 6∈ Λk+1(v). Let ρ = 〈σ�h〉v,
by Definition 5.1.2, it means that there exist n ∈ N and i ∈ Π such that
ρn ∈ Vi and

Costi(ρ≥n) > λk+1(ρn). (B.3)

But by induction hypothesis, we know that

Costi(ρ≥n) ≤ λk(ρn). (B.4)

It follows by (B.3) and (B.4) that λk+1(ρn) < λk(ρn) and that

λk+1(ρn) < +∞, λk(ρn) 6= 0 and λk+1(ρn) 6= 0.

In regards of Definition 11.1.5, these three relations allow us to conclude that

λk+1(ρn) = 1 + min
(ρn,v′)∈EX

sup{Costi(ρ
′) | ρ′ ∈ Λk(v′)}.
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Let v′ ∈ V be such that

λk+1(ρn)− 1 = sup{Costi(ρ
′) | ρ′ ∈ Λk(v′)}. (B.5)

Let h′ = hρ0 . . . ρn−1 ∈ HistX(x0), and let us define the one-shot deviating
strategy τi from σi�h′ such that τi(ρn) = v′. Let us prove that τi is a one-shot
profitable deviation for player i in (X �h′ , ρn).

Costi(h
′〈τi, σ−i|h′〉ρn)

= Costi(h
′ρn〈σ�h′ρn〉v′) (as τi is a one-shot deviating strategy)

= |h′ρnv′|+ Costi(〈σ�h′ρn〉v′) (as λk+1(ρn) 6= 0)

≤ |h′ρnv′|+ λk+1(ρn)− 1 (by (B.5) and as 〈σ�h′ρn〉v′ ∈ Λk(v′) by IH)
< |h′ρn|+ Costi(ρ≥n) (by (B.3))
= Costi(h

′〈σ�h′〉ρn)

This proves that σ is not a very weak SPE and so not an SPE by Corol-
lary 2.4.23, which is a contradiction. This concludes the proof.

Proposition B.1.3. Let ρ0 ∈ Λ∗(x0), then ρ0 is the outcome of an SPE in
(X , x0).

Proof. By Theorem 2.4.9, there exists an SPE in (X , x0) and thus, by Propo-
sition B.1.2:

Λ∗(v) 6= ∅ for all v ∈ Succ∗(x0). (B.6)

Let ρ0 ∈ Λ∗(x0) and let us show how to construct a very weak SPE σ (and
so an SPE by Corollary 2.4.23) with outcome ρ0 in (X , x0). We define σ step
by step by induction on the subgames of (X , x0). We first partially build σ
such as it produces ρ0, i.e., 〈σ〉x0 = ρ0. Now, we define a set of plays which
is useful to define σ in the subgames. For all (i, v′) such that (v, v′) ∈ EX

with v, v′ ∈ Succ∗(x0) and v ∈ V X
i , we take ρi,v′ ∈ Λ∗(v′) such that:

Costi(ρi,v′) = max{Costi(ρ
′) | ρ′ ∈ Λ∗(v′)} (B.7)
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Notice that such a play exists by (B.6) and Corollary 11.1.11. The construc-
tion of σ is done by induction as follows. Consider hvv′ ∈ HistX(x0) with
v ∈ V X

i such that 〈σ�h〉v is already defined but not yet 〈σ�hv〉v′ . We extend
the definition of σ as follows:

〈σ�hv〉v′ = ρi,v′

Let us prove that σ is a very weak SPE. Consider the subgame (X �h, v) for
a given hv ∈ HistX(x0) with v ∈ V X

i and the one-shot deviating strategy
σ′i from σi|h such that σ′i(v) = v′. By construction, there exists ρj,u and
ρi,v′ as defined previously and g ∈ HistX(x0) such that h〈σ�h〉v = gρj,u and
〈σ�hv〉v′ = ρi,v′ .

We prove that σ′i is not a one-shot profitable deviation by proving
that Costi(h〈σ�h〉v) ≤ Costi(hv〈σ�hv〉v′). If i ∈ I(v), then obviously
Costi(h〈σ�h〉v) = Costi(hv〈σ�hv〉v′). Otherwise i 6∈ I(v). We have that
ρ = 〈σ�h〉v is suffix of ρj,u, that is, ρ = ρj,u,≥n for some n ∈ N and that
ρj,u ∈ Λ∗(u) = Λk

∗
(u) = Λk

∗+1(u) (by (B.7) and the fixpoint). It follows
that:

Costi(ρ) = Costi(ρj,u,≥n)

≤ λk∗+1(v)

= 1 + min
(v,w)∈EX

sup{Costi(ρ
′) | ρ′ ∈ Λk

∗
(w)}

≤ 1 + sup{Costi(ρ
′) | ρ′ ∈ Λk

∗
(v′)}

= 1 + Costi(ρi,v′). (B.8)

Thus we have that

Costi(h〈σ�h〉v) = |hv|+ Costi(ρ)

≤ |hv|+ 1 + Costi(ρi,v′) (by (B.8))

= Costi(hvρi,v′)

= Costi(hv〈σ�hv〉v′).

This concludes the proof.
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B.1.2 Proofs of Section 11.2

Proofs of Lemma 11.2.5 and Lemma 11.2.6

Proof of Lemma 11.2.5. Let v ∈ V X and ρ be a play in X such that ρ ∈ Λ(v)

and ρ0 = v. We build the corresponding infinite path π in C(λ) iteratively as
follows: Let π0 := vC . Let n ∈ N, n ≥ 1. Suppose that π<n has been already
constructed, we show how to choose πn. Suppose πn−1 = (v′, (c′i)i∈Π). Then
πn := (v′′, (c′′i )i∈Π), where:

• v′′ = ρn,

• for every i ∈ Π:

c′′i =


0 if i ∈ I(v′′),

c′i − 1 if i /∈ I(v′′) and v′′ /∈ V X
i ,

min(c′i − 1, λ(v′′)) if i /∈ I(v′′) and v′′ ∈ V X
i

Let us show that ((v′, (c′i)i∈Π), (v′′, (c′′i )i∈Π)) ∈ EC . As ρ is a play in X ,
we clearly have (v′, v′′) ∈ EX . Assume now, towards contradiction, that
((v′, (c′i)i∈Π), (v′′, (c′′i )i∈Π)) /∈ EC , that is, there is no outgoing edge from
vertex (v′, (c′i)i∈Π) in the counter graph. By Definition 11.2.2, this means
that there exists a player i such that c′i = 1 and i /∈ I(v′′).
As c′i = 1, by Definition 11.2.2 and construction of π0 . . . πn−1, there must
exist a largest index m ≤ n − 1 such that ρm ∈ V X

i , λ(ρm) = d with d > 0

and such that the counter value for player i decreases by exactly 1 at each
step from vertex πm until reaching value c′i = 1 at vertex πn−1 = v′. Since ρ
is λ-consistent, player i visits his target set along ρ in at most d steps, thus
at most at vertex v′′, and thus i ∈ I(v′′), which is a contradiction.

Proof of Lemma 11.2.6. Let vC = (v, (ci)i∈Π) be a starting vertex in SV(λ).
Let π be an infinite path in C(λ) such that π0 = vC . Let ρ be the projection
of π on V X , that is, ρn = v′ with πn = (v′, (c′i)i∈Π), for every n ∈ N.

• Clearly, ρ is a play in X : by construction of C(λ), there exists an edge
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between two vertices (v, (ci)i∈Π) and (v′, (c′i)i∈Π) in C(λ) only if (v, v′)

is an edge in EX .

• Furthermore, the play ρ is λ-consistent: Assume, towards contradic-
tion, that it is not. Thus, there exists n ∈ N and i ∈ Π such that
ρn ∈ V X

i and

Costi(ρ≥n) > λ(ρn). (B.9)

Consider now πn and the value ci of the counter for player i at this
vertex. Since ρn ∈ V X

i , we know that ci ≤ λ(ρn). From this vertex,
the counter value for player i decreases at least by 1 at each step along
π≥n. and hits the value 0 before λ(ρn) steps. However, this means that
in ρ≥n, player i visits his target set sooner than expected, which is a
contradiction with (B.9).

Proof of Proposition 11.2.7

Before proving Proposition 11.2.7, we need the following technical lemma:

Lemma B.1.4. Let vC be a starting vertex in SV(λ) associated with v ∈ V X

such that I(v) = J`. Let π be a finite prefix of a valid path in C(λ) such that:

• π0 = vC ,

• π does not contain any cycle.

Then,

|π| ≤ |V |+ 2 ·mR(λ`) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λj)

Proof sketch. The proof of this lemma is quite technical, so we give here the
main ideas and refer to the full proof hereafter for more details.
Let π be a finite prefix of a valid path in C(λ) as in the statement. Let
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π[`]0

J`

∞→ c

π[n]0

Jn

π[m]0

Jm

Figure B.1: Region decomposition of π

π[`] . . . π[m] be its region decomposition according to Lemma 11.1.1, graph-
ically represented in Figure B.1. Let ρ be the corresponding path in X and
ρ[`] . . . ρ[m] be its region decomposition. Let us consider a fixed non-empty
section π[n].
Suppose first that the counter values at π[n]0 are either 0 or +∞. Let us
prove that along π[n], there can be at most |V | steps before reaching a vertex
with a finite positive value of λ:

• assume there is a cycle in the corresponding section ρ[n] in X such that
from ρ[n]0 and along the cycle, all the values of λ are either 0 or +∞,

• by construction of C(λ), the counter values in the corresponding prefix
of π[n] remain fixed for each vertex of this prefix: as no value of λ is
positive and finite, no counter value can be decremented,

• thus, the cycle in ρ[n] is also a cycle in π[n] which is impossible by
hypothesis,

• thus there is no such cycle in ρ[n], and as there are at most |V | vertices
in region XJn , ρ[n] can have a prefix of length at most |V | with only
values 0 or +∞ for λ, implying that this is also the case for π[n].

Therefore, we can decompose π[n] into a (possibly empty) prefix of length at
most |V |, and a (possibly empty) suffix where at least one counter value c′i,
for some i, is a positive finite value in its first vertex v′. This frontier between
prefix and suffix of π[n] is represented by a vertical double bar ‖ with caption
∞ → c in Figure B.1. This value c′i is bounded by mR(λn), the maximal
finite range of λn. From there, as the corresponding ρ is λ-consistent, player i
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reaches his target set in at most c′i steps, and ρ enters a new region, which
means that the section π[n] is over. So, in that case, the length of π[n] can
be bounded by |V |+ mR(λn).
Suppose now that at vertex π[n]0, there exists a counter value ci for some
player i that is neither 0 nor +∞. This means that there was a constraint for
player i initialized in a previous section π[n′], with n′ < n, that has carried
over to π[n]0, via decrements of at least 1 per step. We know that the initial
finite counter value is bounded by mR(λn′), and appeared before the end of
section π[n′]. Thus the length from the end of section π[n′] to the end of
section π[n] is bounded by mR(λn′), as again, once the counter value attains
0 for player i, the path π has entered the next section.
Therefore, considering the possible cases for each section, we can bound the
total length of π as follows:

|π| ≤
m∑
j=`

|V |+ 2 ·mR(λj).

Finally, remark that by I-monotonicity, it is actually the case that only (and
at most) |Π| different non-empty sections can appear in the decomposition
of π. Furthermore, for each n ∈ {`+ 1, . . . , N}, we have

mR(λn) ≤ max
Jj>J`

|Jj |=|Jn|

mR(λj)

by Definition 11.2.1. Thus, we have the following bound:

|π| ≤ |V |+ 2 ·mR(λ`) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λj)

which is the bound stated in Lemma B.1.4.

Proof of Lemma B.1.4. Let vC be a starting vertex in SV(λ). Let π be a
finite prefix of a valid path in C(λ) such that:

• π0 = vC ,
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• π does not contain any cycle.

The following proof is quite technical, thus we alleviate some of the difficulties
by proving a first upper bound on the length of finite paths without cycles
in C(λ), then by showing how to obtain the desired bound. The main idea
is to bound iteratively the length of prefixes of π, adding at each step of the
reasoning the section for the next region traversed by π.
Let π′ be a valid path in C(λ) such that π is a prefix of π′. By Lemma 11.1.1,
we know that there exist two natural numbers `,m′ ≤ N and m′−` (possibly
empty) paths π′`, . . . , π′m′ in C(λ) such that:

• π′ = π′[`] . . . π′[m′],

• for each ` ≤ j ≤ m′, each vertex in π′[n] is of the form (w, (ci)i∈Π) with
I(w) = Jj .

The finite path π is a finite prefix of π′. Thus there exists a natural number
m ≤ m′ and m− ` (possibly empty) paths π[`], . . . , π[m′] in C(λ) such that:

• π = π[`] . . . π[m],

• for each ` ≤ j < m, π[j] = π′[j],

• π[m] if a finite prefix of π′[m].

By Lemma 11.2.6, there exist a corresponding λ-consistent play ρ′ in X and a
corresponding history ρ. Furthermore, since π contains no cycle, the sections
π[n] do not either.

We first treat the case where m < m′.
We first bound the length of the first section π[`]. Recall that since π[`]0 =

vC ∈ SV(λ), we have that vC = (v, (ci)i∈Π) with ci = 0 if i ∈ J`, ci = λ(v) if
v ∈ Vi and ci = +∞ otherwise.
Suppose 0 < λ(v) < +∞. In that case, we know that along ρ′, which is
λ-consistent, player i reaches his target after at most λ(v) steps. Thus, there
exists n ≤ m′, n 6= ` such that I(ρλ(v)) = Jn, J` ( Jn, and πλ(v) belongs
to section π[n]. This means that section π[`] is shorter than λ(v). Since
I(v) = J`, we have that λ(v) ≤ mR(λ`), and thus |π[`]| ≤ mR(λ`).
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Suppose now that λ(v) = 0 or λ(v) = +∞. The counter values at vC are
thus either 0 or +∞. Along π′, they can stay stable for at most |V | steps
(see Proof sketch of Lemma B.1.4. Otherwise, the cycle induced in ρ′ is also
a cycle in π′ as the counter values are fixed. If π′|V |+1 is in section π′[n] with
n > `, then we immediately get that |π[`]| ≤ |V |. If π′|V |+1 is in section π′[`],
then it means that a counter value for some player i has become finite along
the first |V |+1 vertices of π′[`]. Let t be the first index it does so along π′[`].
By the same argument as in the previous case, we know that from π′[`]t,
there is at most mR(λ`) vertices before entering the next section of π′. Thus,
we obtain that:

|π[`]| ≤ |π′[`]|
≤ |V |+ mR(λ`)

≤ |V |+ 2 ·mR(λ`).

If ` = m, we can already conclude that:

|π| ≤ |π[`]|
≤ |V |+ 2 ·mR(λ`)

≤
m∑
j=`

|V |+ 2 ·mR(λj).

Suppose now that ` < m. We show that for each n > `, we have:

|π[`] . . . π[n]| ≤ |V |+2 ·mR(λ`)+

 n−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |+mR(λn).

Let n = ` + 1. We assume π[n] is not empty, otherwise its length is 0.
Consider now π[n]0.

Suppose there exists a player i such that his counter value ci at π[n]0 =

(w, Jn, (ci)i∈Π) is a finite non-zero value. If w 6∈ Vi, it means that the counter
value has decreased since a vertex (w′, (c′i)i∈Π) in the previous section π[`]
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such that w′ ∈ Vi and c′i = λ(w). Thus, the length of the path from this
vertex (w′, (c′i)i∈Π) to the next section π[n+ 1] is smaller or equal than λ(w′).
In particular, the whole section π[n] is “covered" by this path. Therefore, we
can conclude that |π[n]| ≤ λ(w′) ≤ mR(λ`). Since we already know that
|π[`]| ≤ |V |+ mR(λ`), we obtain that:

|π[`]π[n]| ≤ |V |+ mR(λ`) + mR(λ`)

≤ |V |+ 2 ·mR(λ`).

If w ∈ Vi, it means that either the counter value ci is equal to λ(w) or
has decreased since a vertex (w′, (c′i)i∈Π) in the previous section π[`] such
that w′ ∈ Vi and c′i = λ(w′). Thus, we have that ci ≤ mR(λn) or ci ≤
mR(λ`), and, in turn, |π[n]| ≤ mR(λn) or |π[n]| ≤ mR(λn). Therefore, we
can conclude that:

|π[`]π[n]| ≤ |V |+ mR(λ`) + mR(λ`) + mR(λn)

≤ |V |+ 2 ·mR(λ`) + mR(λn).

Suppose now that for every player i, his counter value ci at π[n]0 =

(w, (ci)i∈Π) is either 0 or +∞. In that case, we are in a similar case than for
section π[`], thus we can conclude that |π[n]| ≤ |v|+ mR(λn). Thus, we have
indeed:

|π[`]π[n]| ≤ |V |+ mR(λ`) + |V |+ mR(λn),

and also
|π[`]π[n]| ≤ |V |+ 2 ·mR(λ`) + |V |+ mR(λn).

If m = `+ 1, we are done.

Suppose now that m > ` + 1. Let n be such that ` + 1 < n ≤ m. Assume
that for each n′ < n, it holds that

|π[`] . . . π[n′]| ≤ |V |+2 ·mR(λ`)+

 n′−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |+mR(λn′).
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We assume π[n] is not empty, otherwise its length is 0. Consider now π[n]0.

Suppose there exists a player i such that his counter value ci at π[n]0 =

(w, (ci)i∈Π) is a finite non-zero value. If w 6∈ Vi, it means that the counter
value has decreased since a vertex (w′, (c′i)i∈Π) in a previous section π[n′]

such that w′ ∈ Vi and c′i = λ(w′). Thus, the length of the path from this
vertex (w′, (c′i)i∈Π) to the next section π[n+ 1] is smaller or equal than λ(w′).
In particular, the whole sections from π[n′ + 1] to π[n] are “covered" by this
path. Therefore, we can conclude that |π[n′ + 1] . . . π[n]| ≤ λ(w′) ≤ mR(λn′).
Since we already know that:

|π[`] . . . π[n′]| ≤ |V |+2 ·mR(λ`)+

 n′−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |+mR(λn′),

we obtain that:

|π[`] . . . π[n]| ≤ |V |+ 2 ·mR(λ`) +

 n′−1∑
j=`+1

|V |+ 2 ·mR(λj)


+|V |+ mR(λn′) + mR(λn′)

≤ |V |+ 2 ·mR(λ`) +

 n′−1∑
j=`+1

|V |+ 2 ·mR(λj)


+|V |+ 2 ·mR(λn′)

≤ |V |+ 2 ·mR(λ`) +

 n−1∑
j=`+1

|V |+ 2 ·mR(λj)


+|V |+ mR(λn).

If w ∈ Vi, it means that either the counter value ci is equal to λ(w) or has
decreased since a vertex (w′, (c′i)i∈Π) in a previous section π[n′] such that
w′ ∈ Vi and c′i = λ(w′). Thus, we have that ci ≤ mR(λn) or ci ≤ mR(λn′),
and, in turn, |π[n]| ≤ mR(λn) or |π[n]| ≤ mR(λn′).
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If |π[n]| ≤ mR(λn), we can conclude that:

|π[`] . . . π[n]| ≤ |V |+ 2 ·mR(λ`) +

 n−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ mR(λn)

≤ |V |+ 2 ·mR(λ`) +

 n−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |+ mR(λn).

If |π[n]| ≤ mR(λn′), we can conclude that:

|π[`] . . . π[n]| ≤ |V |+ 2 ·mR(λ`) +

 n′−1∑
j=`+1

|V |+ 2 ·mR(λj)


+ |V |+ mR(λn′) + mR(λn′)

≤ |V |+ 2 ·mR(λ`) +

 n−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |+ mR(λn).

Suppose now that for every player i, his counter value ci at π[n]0 =

(w, (ci)i∈Π) is either 0 or +∞. In that case, we are in a similar case than for
section π[`], thus we can conclude that |π[n]| ≤ |v|+ mR(λn). Thus, we have
indeed:

|π[`] . . . π[n]| ≤ |V |+ 2 ·mR(λ`) +

 n−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |+ mR(λn)

and thus finally:

|π| ≤ |π[`] . . . π[m]| ≤
m∑
j=`

|V |+ 2 ·mR(λj).

Assume now that m = m′. In that case, we cannot rely on the section π′m

to be finite, as the play ρ′ never reaches another region. However, in this
situation, it is guaranteed that the counter values in π′m are fixed and are
equal to either 0 or +∞: indeed, a finite counter value would imply that some
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player i such that i 6∈ Jm reaches his target in ρ′ exactly when his counter
value becomes 0 in π′. But π′m is the last section of ρ′, thus no new region is
reached after Jm and no new player can visit his target set than the players
i ∈ Jm. Therefore, finite prefix of π′m that contains no cycle has its length
bounded by |V |. Thus, we can conclude:

|π| = |π[`] . . . π[m]|

≤ |V |+ 2 ·mR(λ`) +

 m−1∑
j=`+1

|V |+ 2 ·mR(λj)

+ |V |

≤
m∑
j=`

|V |+ 2 ·mR(λj).

In fact, the bound given above can be slightly changed to give the desired
bound. Indeed, the bound above relies on the fact that m ≤ N and covers
the case where a path traverses every region from J` to JN . In all generality,
the number N of different regions can be exponential in the number |Π| of
players. However, by the I-monotonicity property, we know that a path can
actually traverse at most |Π| regions. Thus, in the region decomposition of a
path, only (and at most) |Π| sections are relevant and of length greater than
0. Therefore, we can define a subsequence of indices (nr)r≤|π|, with n1 = `,
such that in fact π = π[n1] . . . π[n|Π|]. Hence, we obtain the following bound
on the length t of π:

t ≤
|Π|∑
r=1

|V |+ 2 ·mR(λnr)

Finally, as for every r ≤ |π|, r > 1, we have mR(λnr) ≤ max{mR(λj) | Jj >
J`, |Jj | = |Jnr |}, we obtain the desired bound:

t ≤ |V |+ 2 ·mR(λ`) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λj)

.
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We are now ready to prove Proposition 11.2.7.

Proof of Proposition 11.2.7. Let v ∈ V X with I(v) = J` and i ∈ Π. Let
c ∈ N ∪ {+∞} be such that sup {Costi(ρ) | ρ ∈ Λ(v)} = c. Consider
ρ ∈ Λk(v) such that Costi(ρ) = c. Notice that such a play always exists by
Corollary 11.1.11. Consider also π the valid path in C(λ) that starts in vC

and corresponds to ρ.

Suppose first that c < +∞ and let us prove that

c ≤ |V |+ 2 ·mR(λ`) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λj). (B.10)

If i ∈ J`, then c = 0, as every play starting in v has a cost 0 for player i.
Hence (B.10) trivially holds.
Suppose now that i /∈ J`. As player i eventually reaches his target set along ρ,
this means that ρ eventually leaves region J` and eventually reaches another
region Jn such that i ∈ Jn. Consider the prefix ρ≤c of ρ of length c. Let
π≤c := π≤c[`] . . . π≤c[m] be the prefix of π and its region decomposition such
that π≤c is associated with ρ≤c. Notice that π≤c[m] consists only of one
vertex corresponding to ρc, and that for every n < m, we have i /∈ Jn.
Suppose that π≤c contains a cycle. By construction of C(λ), this cycle is
included in one single section π≤c[n], where n < m (as π≤c[m] contains
only one vertex), and thus i /∈ Jn. Consider the infinite path π′ in C(λ)

that follows π≤c until the cycle and then repeats the cycle forever. By
Lemma 11.2.6, there exists a λ-consistent play ρ′ in X corresponding to
π′. We have Costi(ρ

′) = +∞ for player i, as ρ′ never reaches a region
where player i visits his target set. This is a contradiction with the fact that
sup {Costi(ρ) | ρ ∈ Λ(v)} = c is finite.
Therefore π≤c contains no cycle, and by Lemma B.1.4,

|π≤c| ≤ |V |+ 2 ·mR(λ`) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λj).

Since |π≤c| = c = Costi(ρ), we obtain Inequality (B.10).
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Let us now prove the second part of Proposition 11.2.7 for both cases c < +∞
and c = +∞. Given the valid path π, we consider the first occurrence of a
cycle in π. We then construct the infinite path π′ in C(λ) that follows π until
this cycle and then repeats it forever. Then π′ is a lasso hgω with the length
|hg| bounded by 2 · |C(λ)|. Clearly if c = +∞, then the corresponding play
ρ′ in X belongs to Λ(v) and has a cost Costi(ρ

′) equal to Costi(ρ) = +∞. If
c < +∞, we know by the first part of the proof that π≤c contains no cycle
and thus is prefix of h. Therefore we also have that the corresponding play
ρ′ has cost Costi(ρ

′) = Costi(ρ) = c.

Remark B.1.5. In the proof of Proposition 11.2.7 and Lemma B.1.4, we consider
paths π in the counter graph C(λ) that starts in a vertex v such that I(v) =

J`. This means that such paths only visit vertices of regions V Jj such that
j ∈ {`, `+1, . . . , N}. There are therefore paths in the counter graph restricted
V ≥J` that we denote by C(λ≥`).

Proof of Theorem 11.2.8

Proof of Theorem 11.2.8. The proof is done by a double induction: First,
we exploit the fact that Algorithm 4 treats every region one after the other,
following the total order on regions in reverse. That is, to compute the values
of the fixpoint function λ∗ over V X , Algorithm 4 computes first the values
of λ∗ on region V JN , then on region V JN−1 etc. . . until finally on region V J1 .
Thus, we follow this order to prove the local bounds on mR(λ

k∗`
` ), starting

by mR(λ
k∗N
N ) and making our way up to mR(λ

k∗1
1 ), assuming for each region

V J` such that ` < N that the bound is true for every region already treated
by Algorithm 4. Second, given a non-bottom region V J` and assuming the
bound is true for every already treated region, we proceed to show the local
bound for V J` by induction on the number k of steps in the computation,
which corresponds to the values of function λk in the sequence of functions
leading to the fixpoint, up to step k∗` , where the values stabilize on region
V `.
Let us now detail the proof. It is structured into several parts.
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Part 1. We begin with some notations and basic properties. We introduce
a useful notation: for each ` < N and each k ∈ N, we define α(λk, `) as
followsa:

α(λk, `) :=

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λkj )

Let ` ≤ N and v ∈ V J` . By Lemma 11.1.8, we know the following:

1. the values of λk+1
` (v) and λk` (v) may differ only when k∗`+1 < k < k∗` ;

2. for k ≤ k∗`+1, we have λk` (v) = λk+1
` (v) = λ0

` (v);

3. for k ≥ k∗` , we have λk` (v) = λk+1
` (v) = λk

∗
` (v)

By 3., we have that for each ` < N , and for k ≥ k∗`+1, we have mR(λk`+1) =

mR(λ
k∗`+1

`+1 ). Thus, for k ≥ k∗`+1, we also have

α(λk, `) = α(λk
∗
`+1 , `). (B.11)

Part 2. Let ` < N and assume J` is not a bottom region. We start by
proving, this time by induction on the number k of algorithm steps, a bound
on mR(λk` ). Note, by Lemma 11.1.8 recalled above, that the only relevant
steps for region J` are the steps k, where k∗`+1 ≤ k ≤ k∗` . Let us show, for
each such k, that:

mR(λk` ) ≤

|Dom(λk` )|∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) (B.12)

where Dom(λk` ) = {v ∈ V J` | λk` (v) 6= 0, λk` (v) 6= +∞}.

• Base case: Assume k = k∗`+1. By Lemma 11.1.8, we know that λk` = λ0
` .

Thus, mR(λk` ) = mR(λ0
` ) = 0. Furthermore, Dom(λk` ) = Dom(λ0

` ) = ∅,
thus

∑|Dom(λk` )|
i=0 2i = 1. Clearly, Equation (B.12) is satisfied.
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• General case: Let now k be such that k∗`+1 ≤ k < k∗` . Assume that
Equation (B.12) holds for k. Let us show that

mR(λk+1
` ) ≤

|Dom(λk+1
` )|∑

i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) (B.13)

We distinguish the two following subcases: (a) when Dom(λk+1
` ) =

Dom(λk` ), and (b) when Dom(λk+1
` ) 6= Dom(λk` ).

(a) Assume Dom(λk+1
` ) = Dom(λk` ). We know by Lemma B.1.1 that

for each v ∈ V J` , λk+1
` (v) ≤ λk` (v). Thus in the considered case

we have:

mR(λk+1
` ) ≤ mR(λk` )

≤

|Dom(λk` )|∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) by IH (B.12)

≤

|Dom(λk+1
` )|∑

i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) by (a)

That is, Equation (B.13) holds.

(b) Assume Dom(λk+1
` ) 6= Dom(λk` ). Either we have mR(λk+1

` ) ≤
mR(λk` ), and we can proceed as in subcase (a), or we know that
there exists v ∈ V J` such that λk` (v) = +∞ and λk+1

` (v) < +∞.
Recall that by Definition 11.1.5 we have that

λk+1
` (v) = 1 + min

(v,v′)∈EX
sup{Costi(ρ) | ρ ∈ Λk(v′)} (B.14)

Since λk+1
` (v) 6= +∞, we know that sup{Costi(ρ) | ρ ∈ Λk(v′)}

is finite, for at least one successor v′ of v. Thus, by Proposi-
tion 11.2.7, we obtain:



B.1 – Proofs of Chapter 11 319

λk+1
` (v) ≤ 1 + |V |+ 2 ·mR(λk` ) + α(λk, `)

≤ 1 + |V |+ 2 ·mR(λk` ) + α(λk
∗
`+1 , `) by (B.11)

≤ 1 + |V |+ α(λk
∗
`+1 , `)

+ 2 ·

|Dom(λk` )|∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) by IH (B.12)

≤

2 ·

|Dom(λk` )|∑
i=0

2i

+ 1

 · (1 + |V |+ α(λk
∗
`+1 , `))

Since Dom(λk+1
` ) 6= Dom(λk` ) by (b) (thus indeed |Dom(λk+1

` )| >
|Dom(λk` )|), we have2 ·

|Dom(λk` )|∑
i=0

2i

+ 1

 ≤
|Dom(λk+1

` )|∑
i=0

2i


.

Hence, we have

λk+1
` (v) ≤

|Dom(λk+1
` )|∑

i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `))

Finally, as this holds for any such v ∈ V J` , we obtain

mR(λk+1
` ) ≤

|Dom(λk+1
` )|∑

i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `))

That is, Equation (B.13) holds for region J`.

We proved that Equation (B.12) holds for each non-bottom region J` and
each step k such that k∗`+1 ≤ k ≤ k∗` .

Part 3. We can now come back to the induction on the regions J`, fol-
lowing the order provided by Algorithm 4. Let us show that each ` ≤ N , we
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have

mR(λ
k∗`
` ) ≤ 2(|V |+1) · (|Π||V |+ |V |+ 1) ·

|Π\J`|∑
i=0

2(|V |+1) · 2|Π| (B.15)

• Base case: If J` is a bottom region, we have that mR(λ
k∗`
` ) = 0 showing

that (B.15) holds in this case and thus in particular when ` = N .

• General case: Let ` < N and suppose J` is not a bottom region.
Assume that, for each j > `, Inequality (B.15) holds. By (B.12), we
know that

mR(λk` ) ≤

|Dom(λk` )|∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)).

Furthermore, as |Dom(λ
k∗`
` )| ≤ |V |, we have

mR(λk` ) ≤ 2(|V |+1) · (1 + |V |+ α(λk
∗
`+1 , `)) (B.16)

We turn now our attention towards the term α(λk
∗
`+1 , `):

α(λk
∗
`+1 , `) =

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λ
k∗`+1

j ) by Definition

=

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λ
k∗j
j ) by Lemma 11.1.8

By the induction hypothesis (B.15), we can bound each term mR(λ
k∗j
j )

appearing in the above sum, as |Jj | > |J`|:

mR(λ
k∗j
j ) ≤ 2(|V |+1) · (|Π||V |+ |V |+ 1) ·

|Π\Jj |∑
i=0

2(|V |+1) · 2|Π|

≤ 2(|V |+1) · (|Π||V |+ |V |+ 1) ·
|Π\J`|−1∑
i=0

2(|V |+1) · 2|Π|.
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Coming back to α(λk
∗
`+1 , `) whose the number of terms in the sum can

be bounded by |Π|, we get

α(λk
∗
`+1 , `) (B.17)

=

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λ
k∗`+1

j )

≤ |Π||V |+ 2|Π|

2(|V |+1) · (|Π||V |+ |V |+ 1) ·
|Π\J`|−1∑
i=0

2(|V |+1) · 2|Π|

 .

(B.18)

Hence we have, by combining (B.18) and (B.16):

mR(λ
k∗`
` )

≤ 2(|V |+1) · (1 + |V |+ α(λk
∗
`+1 , `))

≤ 2(|V |+1) · (1 + |V |+ |Π||V |)

+ 2(|V |+1) · 2|Π|

2(|V |+1) · (|Π||V |+ |V |+ 1) ·
|Π\J`|−1∑
i=0

2(|V |+1) · 2|Π|


≤ 2(|V |+1) · (1 + |V |+ |Π||V |)

1 + 2(|V |+1) · 2|Π|

|Π\J`|−1∑
i=0

2(|V |+1) · 2|Π|


≤ 2(|V |+1) · (1 + |V |+ |Π||V |) ·

|Π\J`|∑
i=0

2(|V |+1) · 2|Π|

 .

Hence, Equation (B.15) holds for region J`.

Part 4. We can now prove the three statements of Theorem 11.2.8. We
obtain the first one from Inequality (B.15) by recalling that |Π| ≤ |V | and
|V | ≥ 2:
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mR(λ
k∗`
` ) ≤ 2(|V |+1) · (1 + |V |+ |Π||V |) ·

|Π\J`|∑
i=0

2(|V |+1) · 2|Π|


≤ |V |(|V |+1) · (1 + |V |+ |V |2) ·

|Π\J`|∑
i=0

|V |(|V |+3)


≤ |V |(|V |+1) · (1 + |V |+ |V |2) · (|V |(|V |+3))(|Π\J`|+1)

≤ O(|V |(|V |+3)) · (|V |(|V |+3))(|Π\J`|+1)

≤ O
(
|V |(|V |+3|)(|Π\J`|+2)

)
(B.19)

This proves the first statement of Theorem 11.2.8.
For the second one, remark that mR(λ

k∗`
≥`) = max{mR(λ

k∗j
j ) | Jj ≥ J`}

(since only regions already treated are considered). For each such j ≥ `,
we have mR(λ

k∗j
j ) ≤ O

(
|V |(|V |+3|)(|Π\Jj |+2)

)
by (B.19) and thus mR(λ

k∗j
j ) ≤

O
(
|V |(|V |+3|)(|Π|+2)

)
. It follows that mR(λ

k∗`
≥`) ≤ O

(
|V |(|V |+3|)(|Π|+2)

)
.

For the last statement, recall that mR(λ∗) = mR(λ
k∗1
≥1). Hence in particular

we obtain mR(λ∗) ≤ O
(
|V |(|V |+3|)(|Π|+2)

)
.

aThis sum appears in the statement of Proposition 11.2.7.

Proofs of Corollary 11.2.10 and Corollary 11.2.11

Proof of Corollary 11.2.10. Assume, without loss of generality, that J` is not
a bottom region (otherwise we immediately have mR(λk` ) = 0 for every k ∈
N). Let k ∈ N. Again, by Lemma 11.1.8, if k ≤ k∗`+1, we already have
mR(λk` ) = 0, and if k ≥ k∗` , we have λk` (v) = λk

∗
` (v). Thus we assume that

k∗`+1 < k ≤ k∗` . Using the terminology of the proof of Theorem 11.2.8, we
know, by (B.12) in its proof, that

mR(λk` ) ≤

|Dom(λk` )|∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) (B.20)
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As |Dom(λk` )| ≤ |V |, we have

mR(λk` ) ≤ 2|V |+1 · (1 + |V |+ α(λk
∗
`+1 , `)) (B.21)

From there, following the same steps (from Equation (B.16) onwards) as
in the proof of Theorem 11.2.8 leads to the desired bound: mR(λk` ) ≤
O
(
|V |(|V |+3)(|Π|+2)

)
.

Similarly, as mR(λk≥`) = max{mR(λkj ) | j ≥ `}, and as we just showed
that mR(λkj ) ≤ O

(
|V |(|V |+3|)(|Π|+2)

)
for every j and k, we immediately get

mR(λk≥`) ≤ O
(
|V |(|V |+3|)(|Π|+2)

)
.

Proof of Corollary 11.2.11. Let v ∈ V X with I(v) = J` and k ∈ N. Suppose
there exists c ∈ N such that sup {Costi(ρ) | ρ ∈ Λk(v)} = c. If J` is a
bottom region, then c = 0, thus we assume from now on that J` is not a
bottom region. Then, by Proposition 11.2.7, we know that:

c ≤ |V |+ 2 ·mR(λk` ) +

|Π|∑
r=|J`|+1

|V |+ 2 · max
Jj>J`

|Jj |=r

mR(λ
k∗j
j ).

Using the terminology of the proof of Theorem 11.2.8, we have:

c ≤ |V |+ 2 ·mR(λk` ) + α(λk
∗
`+1 , `)

≤ 1 + |V |+ 2 ·mR(λk` ) + α(λk
∗
`+1 , `)

≤ 1 + |V |+ α(λk
∗
`+1 , `) + 2 ·

|Dom(λk` )|∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `)) by (B.12)

≤

|Dom(λk` )|+1∑
i=0

2i

 · (1 + |V |+ α(λk
∗
`+1 , `))

As |Dom(λk` )| ≤ |V |, we obtain:

c ≤ 2 ·
[
2(|V |+1) · (1 + |V |+ α(λk

∗
`+1 , `))

]
.
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From there, following the same steps (from Equation (B.16) onwards) as in
the proof of Theorem 11.2.8 leads to the desired bound:

c ≤ 2 · O
(
|V |(|V |+3)(|Π|+2)

)
= O

(
|V |(|V |+3)(|Π|+2)

)
.

B.2 Proofs of Chapter 12

B.2.1 Proof of Section 12.2

Proof of Theorem 12.2.1

To prove Theorem 12.2.1, we begin with a preliminary lemma and the proof
of Theorem 12.2.1 follows.

Lemma B.2.1. Let G be a multiplayer quantitative Reachability game. Then
for all v0 ∈ V for which some target set Fj, j ∈ Π, is reachable from v0, there
exists an SPE in (G, v0) whose outcome ρ visits at least one target set Fi,
i ∈ Π, that is, |Visit(ρ)| ≥ 1.

Proof. By Theorem 2.4.9, there exists an SPE in (G, v0) for each initial vertex
v0 ∈ V . Consider the set U ⊆ V of vertices u for which some Fj is reachable
from u, and the set U ′ ⊆ U of those vertices u for which there is an SPE in
(G, u) that visits at least one target set. We have to prove that U = U ′.
Let us assume that v0 ∈ U \ U ′. We claim that there exists an edge (u, u′)

such that u ∈ U \ U ′ and u′ ∈ U ′. Indeed as v0 ∈ U , there exists a history
h = v0v1 . . . vk with vk ∈ Fj for some j. Hence vk ∈ U ′ since the outcome of
all SPEs in (G, vk) immediately visits Fj . As along h we begin with v0 ∈ U\U ′

and we end with vk ∈ U ′, there must exist an edge (v`, v`+1) = (u, u′) with
u ∈ U \ U ′ and u′ ∈ U ′.
Let σu (resp. σu′) be an SPE in (G, u) (resp. in (G, u′)). As u′ ∈ U ′, we can
suppose that the outcome of σu′ visits some target set Fj . From σu and σu′ ,
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we are going to construct another SPE τ in (G, u) whose outcome will now
visit this set Fj . This will lead to a contradiction with u ∈ U \U ′. We define
such a strategy profile τ equal to σu except that it is replaced by σu′ for all
histories with prefix uu′. More precisely,

• for the particular history u, if u ∈ Vi, then τi(u) = u′,

• for each history uu′h ∈ Histi, i ∈ Π, we define τi(uu′h) = σu
′
i (u′h),

• for each history uv′h ∈ Histi, i ∈ Π, with v′ 6= u′, we define τi(uv′h) =

σui (uv′h).

Clearly the outcome of τ is equal to u〈σu′〉u′ and thus visits Fj . It remains
to show that τ is an SPE, i.e., that τ�h is an NE in the subgame (G�h, v) for
all hv ∈ Histi(u), i ∈ Π.

• For all histories hv that begin with uv′ with v′ 6= u′, clearly τ�h is an
NE in (G�h, v) because τ�h = σu�h and σu is an SPE.

• Take any history hv that begin with uu′, and let h = uh′. Let τ ′i be a
deviating strategy for Player i in (G�h, v). By definition of τ we have

〈τ�h〉v = 〈σu′�h′〉v
〈(τ ′i , τ�h,−i)〉v = 〈(τ ′i , σu

′
�h′,−i)〉v

Moreover, as u belongs to no target set, we have Costi(uρ) = 1 +

Costi(ρ) for all plays ρ ∈ Plays(u′). It follows that if τ ′i is a profitable
deviation for Player i with respect to τ�h, it is also a profitable deviation
with respect to σu′�h′ . The latter case never holds because σ

u′ is an SPE
(and in particular σu′�h′ is an NE). Therefore τ�h is an NE in (G�h, v).

• It remains to consider the history u and to prove that τ is an NE in
(G, u). From what has been gathered so far, only Player i such that u ∈
Vi might have a profitable deviation by deviating at the initial vertex
u with a strategy τ ′i such that τ ′i(u) = v′ 6= u′ = τi(u). Notice that
since u ∈ U \ U ′, we have Costi(〈σu〉u) = +∞ and since σu is an SPE
(and in particular an NE), we have Costi(〈τ ′i , σu−i〉u) = +∞. Moreover
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as τ ′i(u) = v′ 6= u′ and by definition of τ , we have Costi(〈τ ′i , σu−i〉u) =

Costi(〈τ ′i , τ−i〉u) = +∞. It follows that τ ′i is not a profitable deviation
for Player i with respect to τ , and then τ is an NE in (G, u).

Proof of Theorem 12.2.1. Let (G, v0), with G = (A, (Costi)i∈Π, (Fi)i∈Π), be
an initialized quantitative Reachability game such that its arena is strongly
connected. Assume by contradiction that there exists no SPE in (G, v0)

whose outcome visits all target sets Fi, i ∈ Π, that are non-empty. By
Theorem 2.4.9, there exists an SPE σ in (G, v0), and we take such an SPE
σ whose outcome ρ = 〈σ〉v0 visits a maximum number of target sets, say
Fi1 , Fi2 , . . . , Fik . Thus by assumption there exists at least one Fj 6= ∅ with
j 6∈ {i1, . . . , ik} that is not visited by ρ. Thanks to Lemma B.2.1, we are going
to define from σ another SPE τ in (G, v0) whose outcome visits all Fi1 , . . . , Fik
as well as an additional target set. This will lead to a contradiction.
Consider a prefix ρ0ρ1 . . . ρ` of ρ that visits all Fi1 , . . . , Fik . We denote it
by gu with u = ρ`. From G we define the quantitative Reachability game
G′ = (A, (Cost′i)i∈Π, (F

′
i )i∈Π) with the same arena A and such that F ′i = ∅ if

i ∈ {i1, . . . , ik} and F ′i = Fi otherwise ((Cost′i)i∈Π is defined with respect to
(F ′i )i∈Π). Notice that F ′j = Fj is not empty and it is reachable from u since
A is strongly connected. Therefore by Lemma B.2.1, there exists an SPE σ′

in (G′, u) that visits at least one target set F ′j′ . From σ and σ′, we define a
strategy profile τ in (G, v0) as follows: let h ∈ Histi(v0),

• if h = guh′ for some h′, then τi(h) = σ′i(uh
′),

• otherwise τi(h) = σi(h).

Thus, τ acts as σ, except that after a history beginning with gu, it acts as
σ′. Clearly the outcome of τ is equal to g〈σ′〉u and thus visits F ′j′ = Fj′

in addition to Fi1 , . . . , Fik . It remains to show that τ is an SPE. Consider
hv ∈ Histi(v0), i ∈ Π, and let us show that τ�h is an NE in (G�h, v).

• If neither hv is a prefix of gu nor gu is a prefix of hv, then τ�h = σ�h

by definition of τ , and τ�h is an NE in (G�h, v) because σ is an SPE in
(G, v0).
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• If gu is a prefix of hv, let h′ such that gh′ = h. Suppose first that hv
visits Fi, then Player i has clearly no incentive to deviate in (G�h, v).
Suppose now that hv does not visit Fi, then i 6∈ {i1, . . . , ik} and F ′i = Fi

by definition of G′. Hence for all plays π in (G�h, v) that start in v,
h′π is a play in (G′, u) that starts in u, and we have Costi(hπ) =

|gu| + Cost′i(h
′π). Hence by definition of τ , a profitable deviation for

Player i with respect to τ�h (G�h, v) would be a profitable deviation with
respect to σ′�h′ in (G′�h′ , v). The latter case cannot happen as σ′ is an
SPE in (G′, u) and it follows that τ�h is an NE in (G�h, v).

• Consider the last case where hv is a prefix of gu with hv 6= gu, and let
hh′ = g. Consider τ ′i a deviating strategy for Player i with respect to
τ�h in the subgame (G�h, v), and let ρ′ = 〈(τ ′i , τ�h,−i)〉v. Without loss
of generality, we can suppose that h′u is not a prefix of ρ′ since this
case was treated at the previous item. Notice that if i ∈ {i1, . . . , ik},
then Costi(〈τ�h〉v) = Costi(〈σ�h〉v), otherwise Costi(〈τ�h〉v) ≤ +∞ =

Costi(〈σ�h〉v). In both cases, as h′u is a prefix of both 〈τ�h〉v and 〈σ�h〉v,
but not a prefix of ρ′, if τ ′i was a profitable deviation for Player i with
respect to τ�h, it would also be a profitable deviation with respect to
σ�h which is impossible since σ is an SPE.

B.2.2 Proofs of Section 12.3

Proof of Proposition 12.3.9

Proof of Proposition 12.3.9. Let (G, v0) be an initialized multiplayer quanti-
tative Reachability game and let (X , x0) be its associated extended game.
Let c ∈ (N ∪ {+∞})|Π| be a cost profile and let M = max

i∈Π
{ci | ci < +∞} if

this maximum exists and M = 0 otherwise.

(1⇒ 2) : Let us assume that there exists an SPE σ in (X , x0) such that
Cost(〈σ〉x0) = c. Then by Corollary 7.5.2 and Lemma 7.3.2 (applied on the
extended game), we have that 〈σ〉x0 ∈ Λ∗(x0) and for all x ∈ Succ∗(x0),
Λ∗(x) 6= ∅. In the proof of Theorem 7.3.1, we use these sets of λ∗-consistent
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plays in order to build a good symbolic witness with ρ(0,x0) = 〈σ〉x0 .
We now show how to obtain a finite good symbolic witness P. We begin with
P = ∅.
Let ρ = 〈σ〉x0 . We apply (P2) on ρ to obtain a lasso ρ(0,x0) such that the
length of this lasso is bounded by M + |V | and Cost(ρ(0,x0)) = c. Moreover,
as ρ is λ∗-consistent, ρ(0,x0) is also λ∗-consistent (by Lemma 12.3.5)a. We
add ρ(0,x0) to P.

For each (i, x) ∈ I, let ρ be such that Costi(ρ) = max{Costi(ρ
′) | ρ′ ∈ Λ∗(x)}.

We obtain ρ(i,x) by copying ρ until Player i has visited his target set, then
by removing the unnecessary cycles and applying (P2). If Player i does not
visit his target set along ρ, we remove all the unnecessary cycles (by applying
iteratively (P1)) and then we apply (P2). By the same kind of arguments
used in Lemma 12.3.3 and Lemma 12.3.5, we obtain that: i) ρ(i,x) is λ∗-
consistent, ii) Costi(ρ

(i,x)) = Costi(ρ) and iii) the length of the lasso ρ(i,x) is
bounded by a value in O(|V |(|Π|+2)·(|V |+3)) + |Π| · |V | (by Corollary 11.2.11
b). We add ρ(i,x) to P.

By construction P is a finite good symbolic witness.

(2⇒ 3) : Let us assume that there exists a finite good symbolic witness
which satisfies the properties given in Proposition 12.3.9. We have to prove
that there exists an SPE τ in (X , x0) such that Cost(〈τ〉x0) = c and τ is a
finite-memory strategy profile.

Since the lengths of the lassoes are not bounded by the same value L, we do
not directly apply Corollary 7.2.6. We have a lasso ρ(0,x0) of length bounded
byM+ |V | and at most |Π| · |V | ·2|Π| lassoes of lengths bounded by a value in
O(|V |(|Π|+2)·(|V |+3) + |Π| · |V |). Thus if we look at the proof of Corollary 7.2.6,
we obtain from these lassoes a weak SPE τ in (X , x0) such that Cost(〈τ〉x0) =

c and its memory size is in O(M + |Π| · 2|Π| · |V |(|Π|+2)·(|V |+3)+1) (we assume
without loss of generality that |Π| ≤ |V |).
(3⇒ 1) : Obvious.

aLet us recall that being λ∗-consistent or Visitλ∗-consistent is equivalent in the ex-
tended game (Lemma 7.4.15)
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bEven if this result is based on the labeling functions λk computed region by region, we
can rely on it since it is used on the fixpoint Λ∗(x) which is equivalent for both computations
of λ∗

Proof of Proposition 12.3.6 and Proposition 12.3.7

We are now able to prove Propositions 12.3.6 and 12.3.7. We begin by the
first one. Recall that it states that if there exists an NE σ (resp. SPE) in
a reachability game, then one can construct another one, τ , such that its
outcome is a lasso of polynomial length and τ is composed of finite-memory
strategies with polynomial (resp. exponential) size. Moreover, if σ is a solution
to Problem 3 (resp. Problem 4), it is also the case for τ .

Proof of Proposition 12.3.6. • For NEs: Let (G, v0) be an multiplayer
quantitative Reachability game and σ be an NE in (G, v0). Let ρ =

〈σ〉v0 . We apply procedure (P1) on ρ until there is no longer any
unnecessary cycle and then we apply (P2). In this way, we obtain a
lasso ρ′ = h`ω ∈ Plays(v0). By Lemma 12.3.3, |h`| ≤ (|Π| + 1) · |V |
and Costi(h`

ω) ≤ min{Costi(〈σ〉v0), |Π| · |V |} if i ∈ Visit(〈σ〉v0) and
Costi(h`

ω) = +∞ otherwise.

By hypothesis and thanks to Theorem 6.2.3, we know that ρ is
Visit Val*-consistent. Thus, by Lemma 12.3.5, ρ′ is Visit Val*-
consistent. Thanks to Corollary 6.2.4, there exists an NE τ such that
〈τ〉v0 = ρ′ = h`ω with memory O(|Π| · |V |) (we can assume without
loss of generally that |V |, |Π| ≥ 1).

Let y ∈ (N ∪ {+∞})|Π|, let us assume that (Costi(〈σ〉v0))i∈Π ≤ y, by
Lemma 12.3.3 we have that (Costi(〈τ〉v0)) ≤ y.

Let k ∈ {0, . . . , |Π|} and c ∈ N∪{+∞}, let us assume that SW(〈σ〉v0) �
(k, c). If SW(〈σ〉v0) = (k1, c1) and SW(〈τ〉v0) = (k2, c2), we have k1 =

k2 and c2 ≤ c1 ≤ c thanks to Lemma 12.3.3. Thus, we have that
SW(〈τ〉v0) � (k, c).

• For SPEs:

Let (G, v0) be a quantitative Reachability game and (X , x0) be its ex-
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tended game. Let σ be an SPE in (X , x0). Let ρ = 〈σ〉x0 . We
apply procedure (P1) on ρ until there is no longer any unneces-
sary cycle and then we apply (P2). In this way, we obtain a lasso
ρ′ = h`ω ∈ Plays(x0). By Lemma 12.3.3, |h`| ≤ (|Π| + 1) · |V |
and Costi(h`

ω) ≤ min{Costi(〈σ〉x0), |Π| · |V |} if i ∈ Visit(〈σ〉x0) and
Costi(h`

ω) = +∞ otherwise.

By hypothesis and by Corollary 7.5.2 and Proposition 7.4.15, we know
that ρ is Visitλ∗-consistent. Thus, by Lemma 12.3.5, ρ′ is Visitλ∗-
consistent. Finally, thanks to Proposition 7.4.15, Corollary 7.5.2 and
Proposition 12.3.9, there exists an SPE τ such that (Costi(〈τ〉x0))i∈Π =

(Costi(ρ
′))i∈Π with memory O(2|Π| · |Π| · |V |(|Π|+2)·(|V |+3)+1).

Let y ∈ (N ∪ {+∞})|Π|, let us assume that (Costi(〈σ〉x0))i∈Π ≤ y, by
Lemma 12.3.3 we have that (Costi(〈τ〉x0)) = (Costi(ρ

′))i∈Π ≤ y.

Let k ∈ {0, . . . , |Π|} and c ∈ N∪{+∞}, let us assume that SW(〈σ〉x0) �
(k, c). If SW(〈σ〉x0) = (k1, c1) and SW(〈τ〉x0) = (k2, c2), we have
k1 = k2 and c2 ≤ c1 ≤ c thanks to Lemma 12.3.3. Thus, we have that
SW(〈τ〉x0) � (k, c).

Finally, we prove Proposition 12.3.7. Recall that this proposition states
that if there exists an NE σ (resp. SPE) whose outcome is Pareto optimal,
then one can construct another one, τ , such that its outcome is a lasso of
polynomial length, has the same cost as σ (thus is also Pareto optimal), and
τ uses finite-memory strategies with polynomial (resp. exponential) size.

Proof of Proposition 12.3.7. The second and third items are a direct conse-
quence of the first one. Thus, let us prove the first item.
Let σ be an NE such that its cost profile is Pareto optimal in Plays(v0).
To get a contradiction, assume that there exists i ∈ Visit(〈σ〉v0) such that
Costi(〈σ〉v0) > |V | · |Π|. It means that there exists an unnecessary cycle
before Player i reaches his target set. By removing this cycle (applying
(P1)), we obtain a new play ρ′ such that Costi(ρ

′) < Costi(〈σ〉v0) and for
Player j (j 6= i), Costj(ρ

′) ≤ Costj(〈σ〉v0) (by Lemma 12.3.3). It leads



B.3 – Proofs of Chapter 15 331

to a contradiction with the fact that (Costi(〈σ〉v0))i∈Π is Pareto optimal in
Plays(v0).
The same proof holds for SPE.

B.3 Proofs of Chapter 15

This section is devoted to the proofs of Chapter 15. For the sake of clarity, we
denote PlaysÃ, HistÃ and Histi Ã by P̃lays, H̃ist and H̃isti respectively.

B.3.1 Proof of Proposition 15.3.3

In this section, when we consider a history h = h0 . . . hn for some n ∈ N, the
length of h, denoted by |h|, is its number of vertices.

This section is devoted to the proof of Proposition 15.3.3. Let (G, v0) =

(A, (Gaini)i∈Π) be a game and ∼ be a bisimulation equivalence on (G, v0) which
respects the partition and such that for each ρ and ρ′ in Plays, if ρ ∼ ρ′ then
Gain(ρ) = Gain(ρ′).

If there exists an SPE τ in (G, v0) which is uniform and such that Gain(〈τ〉v0)

= p, clearly there exists an SPE σ in (G, v0) such that Gain(〈σ〉v0) = p.
The difficult part is the other implication: if there exists an SPE σ in

(G, v0) such that Gain(〈σ〉v0) = p, then there exists an SPE τ in (G, v0) which
is uniform and such that Gain(〈τ〉v0) = p. Let us prove it.

Let σ be an SPE in (G, v0) such that Gain(〈σ〉v0) = p. In order to build τ ,
we need some additional material and notations that we explain below.

• for each h ∈ Hist(v0): [h] = {h′ ∈ Hist(v0) | h ∼ h′};

• Cn = {[h] | h ∈ Hist(v0) ∧ |h| = n};

• R :
⋃
n∈N
Cn → Hist(v0) ∪ {⊥} which allow us to indentify a witness for

each class;

• P : Hist(v0)→ {0, 1}
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Inductive construction of R and P

The first step, is to choose in a proper way a witness to each each class [h].
We proceed by induction on the length of histories. Moreover, we claim that
the following properties are satisfied all along the inductive construction.

Invariant 1: For each hv ∈ Hist(v0) such that R([hv]) 6=⊥,

hv ∼ R([hv]).

Invariant 2: For each hv ∈ Hist(v0) such that R([hv]) 6=⊥ and |hv| >
1,

R([hv]) = R([h]) Last(R([hv])).1

Invariant 3: For each hv ∈ Hist(v0) such that R([hv]) 6=⊥,

h′v′ ≤ R([hv]) < h′〈σ�h′〉v′

for some h′v′ such that P (h′v′) = 1.

Before beginning the induction, we initialize P and R in the following way:
for all C ∈

⋃
n∈N Cn, R(C) =⊥ and for all h ∈ Hist(v0), P (h) = 0.

• For n = 1 : C1 = {[v0]}, we define P (v0) = 1. Then , for each h such
that v0 ≤ h < 〈σ〉v0 , we define R([h]) = h. Thus, Invariant 3 is satisfied
with h′v′ = v0 and for each v0 < hv < 〈σ〉v0 , R([hv]) is defined in this
step and satisfies Invariant 2. Since R([h]) = h for each witness defined
in this step, Invariant 1 is satisfied too.

• Let us assume that these two invariant are satisfied after step k, and let
us prove it remains true after step k + 1.

• In this step, we first define R for each C ∈ Ck+1 such that R(C) =⊥.
We know that for all h1v1, h2v2 ∈ C, h1 ∼ h2 and R([h1]) = R([h2]) are
already defined (i.e., 6=⊥). Moreover, by Invariant 1, h1 ∼ R([h1]), let
h = R([h1]), by bisimulation ∼, there exists v ∈ V such that h1v1 ∼
hv. We define P (hv) = 1 and R(C) = hv. Then, for all h2v2 ∈ C,

1If h = h0 . . . hn for some n ∈ N, Last(h) = hn.
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h2v2 ∼ h1v1 ∼ hv this implies that h2v2 ∼ R([h2v2]) (Inv 1 ok).
For all h2v2 ∈ C, R([h2v2]) = R(C) = hv = R([h1])v = R([h2])v =

R([h2]) Last(R([h2v2])) (Inv 2 ok). Moreover,
for all h2v2 ∈ C, R([h2v2]) = hv and P (hv) = 1, since hv ≤ hv < h〈σ�h〉v
(Inv 3 ok).

Now, we extend the construction of R and P from hv in the following
way:
∀h′v′ ∈ Hist(v0) st. hv < h′v′ < h〈σ�h〉v we define R([h′v′]) = h′v′. ?

Now, we have to prove that the invariants remains satisfied for all these
new defined classes.

– ∀hv ∈ [h′v′]: hv ∼ h′v′ = R([h′v′]) = R([hv]) (Inv 1 ok);

– ∀hv ∈ [h′v′], we have that hv ∼ h′v′ thus: R([hv]) = R([h′v′]) =

R([h′]) Last(R([h′v′])) (by construction ?). Thus, since h ∼ h′:
R([h′]) = R([h]) (Inv 2 ok).

– ∀hv ∈ [h′v′], we have by construction ? that P (hv) = 1 and hv <
h′v′ < h〈σ�h〉v. Since h′v′ = R([h′v′]) and R([h′v′]) = R([hv])

(h′v′ ∼ hv), we are done (Inv 3 ok).

Construction of τ

To build the uniform strategy profile τ , we proceed as follows: for all n ∈ N,
for all C ∈ Cn, for all h ∈ C, by assuming that Last(h) ∈ Vi:

• If R([h]) = h (h is a witness, thus we want to follow σ): τi(h) = σi(h);

• If R([h]) 6= h (we simulate σ): we know by Invariant 1 that h ∼ R([h]),
thus in particular Last(h) ∼ Last(R([h])), by bisimulation ∼, there exists
x ∈ V such that Last(h)x ∼ Last(R([h]))σi(R([h])). Thus, we define
τi(h) = x.

We state now, some properties about τ and σ. First, we define P 2 = {h ∈
Hist(v0) | ∃C ∈

⋃
n∈N Cn st. R(C) = h}.

2Notice that it is not the same P as the one used to depict a symbolic witness in the
previous parts of this document.



334 Chapter B – Technical Proofs

Lemma B.3.1. For all h ∈ Hist(v0) such that h ∈ P and Last(h) ∈ Vi:
τi(h) = σi(h).

Proof. This assertion is true due to the construction of τ .

Lemma B.3.2. For all h, h′ ∈ Hist(v0) such that h ∼ h′: τi(h) ∼ τi(h
′) by

assuming that Last(h) ∈ Vi.

Notice that, since ∼ respects the partition, if Last(h) ∈ Vi then Last(h′) ∈
Vi, and vice versa.

Proof. Let h, h′ ∈ Hist(v0) such that h ∼ h′ and Last(h) ∈ Vi for some i ∈ Π

then Last(h′) ∈ Vi. We have that R([h]) = R([h′]). By construction, τi(h) ∼
σi(R([h])) and τi(h′) ∼ σi(R([h′])), by transitivity, we have: τi(h) ∼ τi(h

′).

Lemma B.3.3. For all h ∈ P, hτi(h) ∈ P (by assuming that Last(h) ∈ Vi
for some i ∈ Π).

Proof. Let h ∈ P, such that Last(h) ∈ Vi for some i ∈ Π. Since h ∈ P, by
Invariant 3, there exists h′v′ ∈ Hist(v0) such that:

h′v′ ≤ h < h′〈σ�h′〉v′ .

Thus, we have that
h′v′ ≤ hσi(h) < h′〈σ�h′〉v′ .

It follows by construction of R, that hσi(h) ∈ P. Moreover, h ∈ P implies
that τi(h) = σi(h) (by Lemma B.3.1). Thus, hτi(h) ∈ P.
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Lemma B.3.4. For all hv ∈ P, 〈σ�h〉v = 〈τ�h〉v.

Proof. Let hv ∈ P, let ρ = 〈σ�h〉v and let ρ = 〈τ�h〉v. Let us prove by
induction that for all n ∈ N:

1. ρn = ρn;

2. hρ0 . . . ρn ∈ P.

For n = 0, ρ0 = v and ρ0 = v. And by hypothesis, hv ∈ P. Let us assume
that both assertions are satisfied for all n such that n ≤ k. Let us prove that
it remains true for n = k + 1. By assuming that ρk ∈ Vi,

1.

ρk+1 = τi(hρ0 . . . ρk)

= τi(hρ0 . . . ρk) By IH, ρ0 . . . ρk = ρ0 . . . ρk

= σi(hρ0 . . . ρk) By IH, hρ0 . . . ρk ∈ P and by Lemma B.3.1

= ρk+1.

2. By IH, hρ0 . . . ρk ∈ P, moreover we have that, by Lemma B.3.1:

hρ0 . . . ρkρk+1 = hρ0 . . . ρkσi(hρ0 . . . ρk) = hρ0 . . . ρkτi(hρ0 . . . ρk)

And by Lemma B.3.3, we can conclude that hρ0 . . . ρkτi(hρ0 . . . ρk) ∈
P.

Proof that τ is an uniform SPE with gain profile p

There is still to prove that τ is an uniform SPE in (G, v0) such that Gain(〈τ〉v0) =

p. By Lemma B.3.2, τ is uniform, let us prove this is an SPE with the gain
profile p.
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Proof. First, since v0 ∈ P and by Lemma B.3.4, we have that 〈σ〉v0 = 〈τ〉v0 .
Thus, in particular, Gain(〈τ〉v0) = Gain(〈σ〉v0) = p.

By absurdum, let us assume that τ is not an SPE in (G, v0). It means that
there exist hv ∈ Hist(v0), i ∈ Π and a strategy τ ′i of Player i in (G�h, v) such
that τ ′i is a profitable deviation of τi�h, i.e.,

Gaini(h〈τ�h〉v) < Gaini(h〈τ ′i , τ−i�h〉v). (B.22)

Let h′v′ = R([hv]) = R([h]) Last(R([hv])) by Invariant 2.

First step: Let ρ = 〈τ�h〉v and ρ′ = 〈τ�h′〉v′ , let us prove by induction that for
all n ∈ N:

1. ρn ∼ ρ′n;

2. h′ρ′0 . . . ρ′n ∈ P.

For n = 0, we have that ρ0 = v and ρ′0 = v′, thus v ∼ v′ since hv ∼ h′v′.
Moreover, h′v′ ∈ P by hypothesis. Let us assume that these two properties
are satisfied for all n such that n ≤ k, let us prove they remain true for
n = k + 1. Let us assume that ρk ∈ Vj for some j ∈ Π, since ∼ respects the
partition and due to the fact that ρk ∼ ρ′k by IH, we have that ρ′k ∈ Vj .

1.

ρk+1 = τj(hρ0 . . . ρk)

∼ τj(h′ρ′0 . . . ρ′k) By IH, hρ0 . . . ρk ∼ h′ρ′0 . . . ρ′k and Lem. B.3.2

= ρ′k+1

2. h′ρ′0 . . . ρ′kρ
′
k+1 = h′ρ′0 . . . ρ

′
kτi(h

′ρ′0 . . . ρ
′
k), h

′ρ′0 . . . ρ
′
k ∈ P by IH, thus

by Lemma B.3.3: h′ρ′0 . . . ρ′kτi(h
′ρ′0 . . . ρ

′
k) ∈ P.

It allows us to state by (1) that hρ ∼ h′ρ′, thus by hypothesis on ∼, we have
that

Gain(h〈τ�h〉v) = Gain(h′〈τ�h′〉v′). (B.23)
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By (2) and Lemma B.3.1, we have that 〈τ�h′〉v′ = 〈σ�h′〉v′ and thus:

Gain(h′〈τ�h′〉v′) = Gain(h′〈σ�h′〉v′). (B.24)

Second step: Let ρ = 〈τ ′i , τ−i�h〉v, we will build a strategy τ̃i in (G�h′ , v′) such
that ρ ∼ 〈τ̃i, τ−i�h′〉v′ . Let p̃ ∈ Histi(v

′) and let us assume that p̃ = p̃0 . . . p̃m

for some m ∈ N.

• If p̃ ∼ ρ0 . . . ρm, then ρm ∈ Vi (∼ respects the partition) and
ρm+1 = τ ′i(ρ0 . . . ρm). Thus, by ∼ there exists x ∈ V such that p̃x ∼
ρ0 . . . ρmρm+1. We define τ̃i(p̃) = x. Thus, τ̃i(p̃0 . . . ρ̃m) ∼ τ ′i(ρ0 . . . ρm).

• Otherwise, we define τ̃i(p̃) = x for some x ∈ Succ(p̃m).

Let ρ̃ = 〈τ̃i, τ−i�h′〉v′ , let us prove that for all n ∈ N, ρ̃n ∼ ρn. For n = 0,
ρ̃0 = v′ and ρ0 = v, since h′v′ ∼ hv, v′ ∼ v. Let us assume that this property
is true for all n ≤ k and let us prove it remains true for n = k + 1.

• If ρ̃k ∈ Vi, then since ρ̃k ∼ ρk by IH, ρk ∈ Vi (∼ respects the partition).
It follows:

ρ̃k+1 = τ̃i(ρ̃0 . . . ρ̃k)

∼ τ ′i(ρ0 . . . ρk) By IH, ρ̃0 . . . ρ̃k ∼ ρ0 . . . ρk and by constr. of τ̃i
= ρk+1.

• If ρ̃k ∈ Vj (j 6= i), as previously ρk ∈ Vj . Thus:

ρ̃k+1 = τj�h′(ρ̃0 . . . ρ̃k) = τj(h
′ρ̃0 . . . ρ̃k)

∼ τj(hρ0 . . . ρk) By IH, h′ρ̃0 . . . ρ̃k ∼ hρ0 . . . ρk and Lem. B.3.2

= ρk+1.

From this we have that hρ ∼ h′ρ̃ and in particular:

Gaini(h〈τ ′i , τ−i�h〉v) = Gaini(h
′〈τ̃i, τ−i�h′〉v′). (B.25)

Third step: From τ̃i, we build σ̃i in (G�h′ , v′) which is a profitable devition of
σi�h′ . Let p ∈ Histi(v

′)
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• If h′p ∈ P, we consider R([h′pτ̃i(p)]) = R([h′p]) Last(R([h′pτ̃i(p)])

by Invariant 2. Let x = Last(R([h′pτ̃i(p)]). We definie σ̃i(p) = x,
in particular, we have that R([h′pτ̃i(p)]) = R([h′p])σ̃i(p) and thus
R([h′p])σ̃i(p) ∈ P.

• If h′p 6∈ P, we define σ̃i(p) = τ̃i(p).

Let π = 〈σ̃i, σ−i�h′〉v′ and π′ = 〈σ̃i, τ−i�h′〉v′ . Let us prove that for all n ∈ N:

1. πn = π′n;

2. h′π0 . . . πn ∈ P

For n = 0, we have that π0 = v′ = π′0. Moreover, h′v′ ∈ P by hypothesis.
Let us assume that these two properties are true for all n ≤ k and let us
prove that they remain true for n = k + 1.

• If πk ∈ Vi, then by IH, πk = π′k ∈ Vi.

1.

πk+1 = σ̃i(π0 . . . πk)

= σ̃i(π
′
0 . . . π

′
k) By IH, π0 . . . πk = π′0 . . . π

′
k.

= π′k+1

2.

h′π0 . . . πkπk+1

= h′π0 . . . πkσ̃i(π0 . . . πk)

= R([h′π0 . . . πk])σ̃i(π0 . . . πk) By IH, h′π0 . . . πk ∈ P
∈ P By constr. of σ̃i.

• If πk ∈ Vj (j 6= i), then by IH, πk = π′k ∈ Vj .
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1.

πk+1

= σj(h
′π0 . . . πk)

= τj(h
′π0 . . . πk) By IH, h′π0 . . . πk ∈ P and by Lem. B.3.1

= τj(h
′π′0 . . . π

′
k) By IH

= π′k+1.

2.

h′π0 . . . πkπk+1

= h′π0 . . . πkσj(h
′π0 . . . πk)

= h′π0 . . . πkτj(h
′π0 . . . πk)

(By IH, h′π0 . . . πk ∈ P
and by Lemma B.3.1)

∈ P (By Lemma B.3.3)

Thus, we can conclude that:

Gaini(h
′〈σ̃i, σ−i�h′〉v′) = Gaini(h

′〈σ̃i, τ−i�h′〉v′). (B.26)

Now, we want to prove that π′ = 〈σ̃i, τ−i�h′〉v′ ∼ ρ̃ = 〈τ̃i, τ−i�h′〉v′ . Let us
recall, that from the second step, we know that ρ̃ ∼ ρ = 〈τ ′i , τ−i�h〉v. Let us
prove that for all n ∈ N: π′n ∼ ρ̃n.
For n = 0: π′0 = v′ = ρ̃0. Let us assume that this property is true for all
n ≤ k and let tus prove that it remains true for n = k + 1.

• If π′k ∈ Vi then, by IH we have that π′k ∼ ρ̃k and so ρ̃k ∈ Vi.

π′k+1 = σ̃i(π
′
0 . . . π

′
k)

= Last(R([h′π′0 . . . π
′
kτ̃i(π

′
0 . . . π

′
k)])) (h′π′0 . . . π

′
k ∈ P )

∼ τ̃i(π′0 . . . π′k)

By IH, we know that π′0 . . . π′k ∼ ρ̃0 . . . ρ̃k and by hypothesis, we have
that ρ̃0 . . . ρ̃k ∼ ρ0 . . . ρk. It follows from the construction of τ̃i that
τ̃i(π

′
0 . . . π

′
k) ∼ τ ′i(ρ0 . . . ρk) and τ̃i(ρ̃0 . . . ρ̃k) ∼ τ ′i(ρ0 . . . ρk). Thus, by

transitivity, π′k+1 ∼ τ̃i(ρ̃0 . . . ρ̃k) = ρ̃k+1.
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• If π′k ∈ Vj (j 6= i) then as previously ρ̃k ∈ Vj .

π′k+1 = τj(h
′π′0 . . . π

′
k)

∼ τj(h′ρ̃0 . . . ρ̃k)
(By IH, h′π′0 . . . π

′
k ∼ h′ρ̃0 . . . ρ̃k

and by Lemma B.3.2)

= ρ̃k+1.

Thus h′π′ ∼ h′ρ̃ and it follows that:

Gaini(h
′〈σ̃i, τ−i�h′〉v′) = Gaini(h

′〈τ̃i, τ−i�h′〉v′). (B.27)

Fourth step: putting all together
By (B.22),(B.23),(B.24),(B.25),(B.26) and (B.27), we can conclude that

Gaini(h
′〈σ�h′〉v′) < Gaini(h

′〈σ̃i, σ−i�h′〉v′).

Thus, there exists a profitable deviation of σi�h′ for Player i in (G�h′ , v′). This
is impossible, since σ is an SPE in (G, v0).

B.3.2 Proof of Theorem 15.3.1

In this section we prove Theorem 15.3.1. In order to do so, we prove the two
implications of the equivalence in two different propositions.

Proposition B.3.5. Let (G, v0) = (A, (Gaini)i∈π) be a game and (G̃, [v0]) =

(Ã, ( ˜Gaini)i∈Π) its associated quotient game where ∼ is a bisimulation equiv-
alence on (G, v0). If ∼ respects the partition and the gain functions, we
have that: if there exists an SPE σ in (G, v0) such that Gain(〈σ〉v0) = p

for some p ∈ {0, 1}|Π| then there exists an SPE τ in (G̃, [v0]) such that
˜Gain(〈τ〉[v0]) = p.
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Proof. Let (G, v0) = (A, (Gaini)i∈π) be a game and (G̃, [v0]) =

(Ã, ( ˜Gaini)i∈Π) its associated quotient game where ∼ is a bisimulation equiv-
alence on (G, v0) which respects the partition and the gain functions. We
assume that there exists an SPE σ in (G, v0) such that Gain(〈σ〉v0) = p for
some p ∈ {0, 1}.
Without loss of generality, we can assume thanks to Proposition 15.3.3
that σ is uniform, i.e., for all histories h,h′ ∈ Hist(v0) such that
Last(h) ∈ Vi ⇔ Last(h′) ∈ Vi, σi(h) ∼ σi(h′).

Let h̃ ∈ H̃ist([v0]) be a history in the quotient game, by bisimulation ∼q⊆
V × Ṽ , there exists h = h0 . . . hn ∈ Hist(v0) such that h ∼q h̃ = [h0] . . . [hn].
Let v ∈ V be the vertex such that σi(h) = v, by assuming that Last(h) ∈ Vi.
We have that v ∼q [v] and, we define τi(h̃) = [v].

CLAIM 1: ∀h̃ ∈ H̃ist([v0]), ∀h ∈ Hist(v0) such that h ∼q h̃, if
Last(h) ∈ Vi, σi(h) ∼q τi(h̃).
Proof: Let h̃ ∈ H̃ist([v0]) and h ∈ Hist(v0) such that Last(h) ∈ Vi

for some i ∈ Π and h ∼q h̃. By construction of τ , there exists
h′ ∈ Histi(v0) such that h′ ∼q h̃ and τi(h̃) = [σi(h

′)]. If h ∼q h̃ and
h′ ∼q h̃, we have that h ∼ h′. Thus, by uniformity of σ, σi(h) ∼ σi(h′)
and in particular [σi(h)] = [σi(h

′)]. In conclusion, σi(h) ∼q [σi(h)] =

[σi(h
′)] = τi(h̃).

Let ρ = 〈σ〉v0 and ρ̃ = 〈τ〉[v0]. Let us prove that: ∀n ∈ N ρn ∼q ρ̃n. Thus,
ρ ∼q ρ̃ and since ∼ respects the gain functions, Gain(ρ) = ˜Gain(ρ̃) = p.
For n = 0: ρ0 = v0 ∼q [v0] = ρ̃0. We assume that this is true for all n ≤ k

and we prove it remains true for n = k + 1. By induction hypothesis, we
have that ρ0 . . . ρk ∼q ρ̃0 . . . ρ̃k. By ∼q, ρk ∈ Vi if and only if ρ̃k ∈ Ṽi. Thus,
ρk+1 = σi(ρ0 . . . ρk) ∼q τi(ρ̃0 . . . ρ̃k) = ρ̃k+1 by Claim 1.

To conclude, we have to prove that τ is an SPE in (G̃, [v0]). Ad absurdum,
we assume that there exists h̃ṽ ∈ H̃ist([v0]) such that there exists a player
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i ∈ Π and a profitable deviation τ ′i of τi�h̃ in (G̃�h̃, ṽ), i.e.,

˜Gaini(h̃〈τ�h̃〉ṽ) < ˜Gaini(h̃〈τ ′i , τ−i�h̃〉ṽ). (B.28)

By bisimulation ∼q, there exists hv ∈ Hist(v0) such that hv ∼q h̃ṽ. We
prove that Player i has a profitable deviation of σi�h in (G�h, v). From which
a contradiction follows since σ has to be an SPE in (G, v0).

We build the profitable deviation σ′i. Let p ∈ Histi(v) a history such that
p = vp1p2 . . . pm for some m ∈ N. By bisimulation ∼q, there exists a unique
p̃ such that p = [v][p1] . . . [pm] and thus p ∼q p̃. Let r ∈ Ṽ be such that
τ ′i(p̃) = r. By bisimulation ∼q, there exists x ∈ V such that ρmx ∼q [ρm]r.
We define σ′i(p) = x. In particular, σ′i(p) ∼q τ ′i(p̃).

Let ρ = 〈σ′i, σ−i�h〉v = vρ1ρ2 . . . and ρ̃ = 〈τ ′i , τ−i�h̃〉ṽ = ṽρ̃1ρ̃2 . . .. Let us show
by induction that for all n, ρn ∼q ρ̃n. It means that hρ ∼q h̃ρ̃ and since ∼q
respects the gain functions,

Gaini(h〈σ′i, σ−i�h〉v) = Gaini(hρ) = ˜Gaini(h̃ρ̃) = ˜Gaini(h̃〈τ ′i , τ−i�h̃〉ṽ).
(B.29)

For n = 0: ρ0 = v ∼q ṽ = ρ̃0. Assume that this property is true for all n ≤ k
and let us prove it remains true for n = k + 1.

• First case: if ρk ∈ Vi, by IH ρk ∼q ρ̃k and thus ρ̃k ∈ Ṽi. It follows
that:

ρk+1 = σ′i(ρ0 . . . ρk)

∼q τ ′i(ρ̃0 . . . ρ̃k)
(By construction of σi

and ρ0 . . . ρk ∼q ρ̃0 . . . ρ̃k (IH))

= ρ̃k+1

• Seconde case: if ρk ∈ Vj with (j 6= i) then as previously ρ̃k ∈ Ṽj
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and we have:

ρk+1 = σj�h(ρ0 . . . ρk)

∼q τj�h̃(ρ̃0 . . . ρ̃k) (ρ0 . . . ρk ∼q ρ̃0 . . . ρ̃k(HI) and Claim 1.)

= ρ̃k+1

There is still to prove that

˜Gaini(h̃〈τ�h̃〉ṽ) = Gaini(h〈σ�h〉v). (B.30)

By Claim 1, we have that 〈σ�h〉v ∼q 〈τ�h̃〉ṽ thus h〈σ�h〉v ∼q h̃〈τ�h̃〉ṽ. The fact
that ∼q respects the gain functions concludes the reasonment.

By (B.28),(B.29) and (B.30), we conclude that σ′i is a profitable deviation in
(G�h, v).

Proposition B.3.6. Let (G, v0) = (A, (Gaini)i∈π) be a game and (G̃, [v0]) =

(Ã, ( ˜Gaini)i∈Π) its associated quotient game where ∼ is a bisimulation equiv-
alence on (G, v0). If ∼ respects the partition and the gain functions, we have
that: if there exists an SPE τ in (G̃, [v0]) such that ˜Gain(〈τ〉[v0]) = p for some
p ∈ {0, 1}|Π| then there exists an SPE σ in (G, v0) such that Gain(〈σ〉v0) = p.

Proof. Let (G, v0) = (A, (Gaini)i∈π) be a game and (G̃, [v0]) =

(Ã, ( ˜Gaini)i∈Π) its associated quotient game where ∼ is a bisimulation
equivalence on (G, v0) which respects the partition and the gain functions.
We assume that there exists an SPE τ in (G̃, [v0]) such that ˜Gain(〈τ〉[v0]) = p

for some p ∈ {0, 1}.

Let h ∈ Hist(v0) such that Last(h) ∈ Vi for some i ∈ Π. Thanks to bisim-
ulation ∼q, there exists a unique h̃ ∈ H̃isti([v0]) such that h ∼q h̃ (?). We
have that τi(h̃) = ṽ for some ṽ ∈ Ṽ , thus by ∼q there exists v ∈ V such that
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hv ∼q h̃ṽ. We define σi(h) = v.

CLAIM 2:

1. ∀h, h′ ∈ Hist(v0) such that h ∼ h′: σi(h) ∼ σi(h
′) (if Last(h) ∈

Vi).

2. ∀h ∈ Hist(v0), ∀h̃ ∈ H̃ist([v0]) such that h ∼q h̃: σi(h) ∼q τi(h̃)

(if Last(h) ∈ Vi).

Proof:

1. By (?), we have that for all h ∼ h′ ∈ Histi(v0) there exists a
unique h̃ such that h ∼q h̃ and h′ ∼q h̃. It follows by con-
struction of σ that σi(h) ∼q τi(h̃) and σi(h′) ∼q τi(h̃) and thus
σi(h) ∼ σi(h′). It means that σ is uniform.

2. let h ∈ Hist(v0) and h̃ ∈ H̃ist([v0]) be two histories such that
Last(h) ∈ Vi iff Last(h̃) ∈ Ṽi for some i ∈ Π and such that
h ∼q h̃. By construction of σ, there exists g̃ ∈ H̃isti([v0]) such
that h ∼q g̃ and σi(h) ∼q τi(g̃). But by ∼q if h ∼q g̃ and h ∼q h̃,
then g̃ = h̃. It concludes the proof.

By (2) in Claim 2, we have that 〈σ〉v0 ∼q 〈τ〉[v0]. It follows, due to the
fact that ∼ respects the gain functions, that Gain(〈σ〉v0) = ˜Gain(〈τ〉[v0]) = p.

Now, we prove that σ is an SPE. Ad absurdum, we assume that there exists
hv ∈ Hist(v0) , there exists i ∈ Π and there exists σ′i a profitable deviation
of σi�h for Player i in (G�h, v), i.e.,

Gaini(h〈σ�h〉v) < Gaini(h〈σ′i, σ−i�h〉v) (B.31)

Let h̃ṽ = [h0][h1] . . . [v] with [h0] = [v0] we have that hv ∼q h̃ṽ. By (2) in
Claim 2, we have that h〈σ�h〉v ∼q h̃〈τ�h̃〉ṽ, since ∼ respects the gain functions,
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it follows:

Gaini(h〈σ�h〉v) = ˜Gaini(h̃〈τ�h̃〉ṽ) (B.32)

To obtain the contradiction, we build τ ′i a profitable deviation of τi�h̃ for
Player i in (G̃�h̃, ṽ).
Let ρ = 〈σ′i, σi�h〉v, let p̃ ∈ H̃isti(ṽ), we define τi(p̃) as follows:

τ ′i(p̃) =

[ρn+1] if p̃ < [ρ0][ρ1] . . . and Last(p̃) = [ρn]

some r ∈ Succ(Last(p̃)) otherwise
.

Let ρ̃ = 〈τ ′i , τ−i�h̃〉ṽ and let us prove that ρ ∼q ρ̃, i.e., ∀n ∈ Nρn ∼q ρ̃n. We
proceed by induction on n.
For n = 0, ρ0 = v ∼q [v] = ṽ = ρ̃0. Let us assume that this property is true
for all n ≤ k and let us prove it remains true for n = k + 1.

• First case: If ρk ∈ Vi, then since ρk ∼q ρ̃k by IH, ρ̃k ∈ Ṽi. It follows
that:

ρk+1 ∼q [ρk+1] (By definition of ∼q )
= τ ′i(ρ̃0 . . . ρ̃k) (By IH, ρ0 . . . ρk ∼q ρ̃0 . . . ρ̃k = [ρ0] . . . [ρk])

= ρ̃k+1

• Second case: If ρk ∈ Vj (with j 6= i), then as previously ρ̃k ∈ Ṽj . It
follows that:

ρk+1 = σj�h(ρ0 . . . ρk) = σj(hρ0 . . . ρk)

∼q τj(h̃ρ̃0 . . . ρ̃k)
(By IH, hρ0 . . . ρk ∼q h̃ρ̃0 . . . ρ̃k

and by (2) in Claim 2)

= τj�h̃(ρ̃0 . . . ρ̃k) = ρ̃k+1

Thus, ρ ∼q ρ̃ and so hρ ∼q h̃ρ̃. Since, ∼ respects the gain functions, we can
conclude that:

Gaini(h〈σ′i, σ−i�h〉v) = ˜Gaini(h̃〈τ ′i , τ−i�h̃〉ṽ). (B.33)
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By (B.31), (B.32) and (B.33), we can state that:

˜Gaini(h̃〈τ ′i , τi�h̃〉ṽ) = Gaini(h〈σ′i, σ−i�h〉v) > Gaini(h〈σ�h〉v) = ˜Gaini(h̃〈τ�h̃〉ṽ)
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