Multi-weighted Reachability Games

Thomas Brihaye ${ }^{1}$ and Aline Goeminne ${ }^{2}$

1. UMONS - Université de Mons, Belgium.
2. F.R.S.-FNRS \& UMONS - Université de Mons, Belgium.

1 Two-player Multi-weighted Reachability Games

2 Studied problems
■ Constrained Existence Problem

- Computing the Pareto frontier

■ Memory requirements

3 Conclusion

Reachability Games

Is it possible to reach \odot with cost $\leq c$?

Reachability Games

Is it possible to reach © with cost $\leq c$?

Is it possible to reach \odot whatever the behavior of the environment with

```
cost \leqc?
```


Reachability Games

Is it possible to reach Θ with cost $\leq c$?

Is it possible to reach ${ }^{(3)}$ whatever the behavior of the environment with cost $\leq c$?

Is it possible to reach \mathcal{S} with cost $\leq\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)$?

Reachability Games

Is it possible to reach $;$ with cost $\leq c$?

Is it possible to reach \odot whatever the behavior of the environment with

$$
\text { cost } \leq c ?
$$

Is it possible to reach ${ }^{-}$ with cost $\leq\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)$?

Is it possible to reach $;$; whatever the behavior of the environment with cost $\leq\left(c_{1}, c_{2}\right)$?

Two-player Multi-weighted Reachability Games

Two-player Multi-weighted Reachability Games

- A d-weighted graph $G=\left(V, E,\left(w_{i}\right)_{1 \leq i \leq d}\right)$;
- Two players: Player \bigcirc and Player \square;
- Turn-based.

A play: v_{0}

Two-player Multi-weighted Reachability Games

■ A d-weighted graph $G=\left(V, E,\left(w_{i}\right)_{1 \leq i \leq d}\right)$;

- Two players: Player \bigcirc and Player \square;
- Turn-based.

A play: $v_{0} v_{2}$

Two-player Multi-weighted Reachability Games

- A d-weighted graph $G=\left(V, E,\left(w_{i}\right)_{1 \leq i \leq d}\right)$;
- Two players: Player \bigcirc and Player \square;
- Turn-based.

A play: $v_{0} v_{2} v_{4}$

Two-player Multi-weighted Reachability Games

- A d-weighted graph $G=\left(V, E,\left(w_{i}\right)_{1 \leq i \leq d}\right)$;
- Two players: Player \bigcirc and Player \square;
- Turn-based.

A play: $v_{0} v_{2} v_{4} v_{7}$

Two-player Multi-weighted Reachability Games

■ A d-weighted graph $G=\left(V, E,\left(w_{i}\right)_{1 \leq i \leq d}\right)$;

- Two players: Player \bigcirc and Player \square;
- Turn-based.

A play: $v_{0} v_{2} v_{4} v_{7}-$

Two-player Multi-weighted Reachability Games

- A d-weighted graph $G=\left(V, E,\left(w_{i}\right)_{1 \leq i \leq d}\right)$;
- Two players: Player \bigcirc and Player \square;
- Turn-based.

A play: $v_{0} v_{2} v_{4} v_{7} \bigodot^{\omega}$

Two-player Multi-weighted Reachability Games

Quantitative reachability objective

Given a target set $\mathrm{F} \subseteq V$, for all plays $\rho=$ $\rho_{0} \rho_{1} \ldots$:
$\operatorname{Cost}_{i}(\rho)= \begin{cases}\sum_{n=0}^{k-1} w_{i}\left(\rho_{n}, \rho_{n+1}\right) & \text { if } k \text { is the least } \\ +\infty & \text { index st. } \rho_{k} \in \mathrm{~F} \\ \text { otherwise }\end{cases}$

Rem: same target set for all dimensions. Ex:

- $\operatorname{Cost}\left(v_{0} v_{3}\left(v_{5} v_{8}\right)^{\omega}\right)=$ $\left(\operatorname{Cost}_{1}\left(v_{0} v_{3}\left(v_{5} v_{8}\right)^{\omega}\right), \operatorname{Cost}_{2}\left(v_{0} v_{3}\left(v_{5} v_{8}\right)^{\omega}\right)\right)=$ $(+\infty,+\infty)$
- $\operatorname{Cost}\left(v_{0} v_{2} v_{4} v_{7} \bigodot^{\omega}\right)=(6,10)$

Two-player Multi-weighted Reachability Games

- A strategy for Player $\bigcirc: \sigma_{\bigcirc}: V^{*} V_{\bigcirc} \longrightarrow V$.
- Given a strategy profile ($\sigma_{\bigcirc}, \sigma_{\square}$) and an initial vertex $v_{0} \rightsquigarrow$ only one consistent play $\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v_{0}}$ called the outcome. Ex: $\left\langle\sigma^{\circ}, \sigma_{\square}\right\rangle_{v_{0}}=v_{0} v_{2} v_{4} v_{7} \oplus^{\omega}$.

Player \bigcirc can ensure a cost profile $\mathbf{c}=$ $\left(c_{1}, \ldots, c_{d}\right)$ from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$
\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq_{c} \mathbf{c}=\left(c_{1}, \ldots, c_{d}\right)
$$

Ex:

- $(8,8) \rightsquigarrow$ Yes. (with memory!)

Player \bigcirc can ensure a cost profile $\mathbf{c}=$ $\left(c_{1}, \ldots, c_{d}\right)$ from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$
\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq_{c} \mathbf{c}=\left(c_{1}, \ldots, c_{d}\right)
$$

Ex:

- $(8,8) \rightsquigarrow$ Yes. (with memory!)

Player \bigcirc can ensure a cost profile $\mathbf{c}=$ $\left(c_{1}, \ldots, c_{d}\right)$ from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$
\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq_{c} \mathbf{c}=\left(c_{1}, \ldots, c_{d}\right)
$$

Ex:

- $(8,8) \rightsquigarrow$ Yes. (with memory!)

Player \bigcirc can ensure a cost profile $\mathbf{c}=$ $\left(c_{1}, \ldots, c_{d}\right)$ from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$
\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq_{c} \mathbf{c}=\left(c_{1}, \ldots, c_{d}\right)
$$

Ex:

- $(8,8) \rightsquigarrow$ Yes. (with memory!)

Player \bigcirc can adapt his strategy in function of the choice of Player $\square \rightsquigarrow$ finite-memory strategy!

Ensure $(v)=\left\{\mathbf{c} \in \overline{\mathbb{N}}^{d} \mid \exists \sigma_{\bigcirc}\right.$ st. $\left.\forall \sigma_{\square}, \operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq c \mathbf{c}\right\}$.
minimal $(\operatorname{Ensure}(v))=\operatorname{Pareto}(v) \rightsquigarrow$ Pareto frontier from v.

For $\mathbf{c}=\left(c_{1}, \ldots, c_{d}\right) \in \operatorname{Pareto}(v)$, a strategy σ_{\bigcirc} is \mathbf{c}-Pareto-optimal if σ_{\bigcirc} ensures c from v.

Studied problems

Studied problems

1 Decide the constrained existence problem.
2. Compute the Pareto frontier and Pareto-optimal strategies.

Constrained existence problem (CEP)

Given a game, a vertex $v \in V$ and $\mathbf{c} \in \mathbb{N}^{d}$, does there exist a strategy σ_{\bigcirc} of Player \bigcirc such that for all strategies of Player \square, we have:

$$
\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq_{\mathrm{c}} \mathbf{c}
$$

Constrained Existence Problem

Given $v \in V$ and $\mathbf{x} \in \mathbb{N}^{d}$, if there exists σ_{\bigcirc} such that for all σ_{\square} we have: $\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}, \sigma_{\square}\right\rangle_{v}\right) \leq_{\mathrm{C}} \mathbf{x}$ then,
there exists $\sigma_{\bigcirc}^{\prime}$ such that for all σ_{\square},

- $\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc}^{\prime}, \sigma_{\square}\right\rangle_{v}\right) \leq_{c} \mathbf{x}$;
$■\left|\left\langle\sigma_{\bigcirc}^{\prime}, \sigma_{\square}\right\rangle_{v}\right|_{\mathrm{F}} \leq|V|$
\rightsquigarrow simulation of the game by an alternating Turing machine during at most $|V|$ steps. Since APtime $=$ PSpace:

In two-player multi-weighted reachability games, the CE problem belongs to PSpace.

In two-player multi-weighted reachability games, the CE problem is PSPACE-hard.
\rightsquigarrow Reduction from the Quantified Subset-Sum problem.

Quantified Subset-Sum Problem

Given a set of natural numbers $N=\left\{a_{1}, \ldots, a_{n}\right\}$ and a threshold $T \in \mathbb{N}$, we ask if the formula

$$
\Psi=\exists x_{1} \in\{0,1\} \forall x_{2} \in\{0,1\} \exists x_{3} \in\{0,1\} \ldots \exists x_{n} \in\{0,1\}, \sum_{1 \leq i \leq n} x_{i} a_{i}=T
$$

is true.

This problem is proved to be PSPACE-complete [Tra06, Lemma 4].

Computing the Pareto frontier

Computing Pareto(v)

$$
\begin{aligned}
\text { Ensure }^{k}(v) & =\left\{\mathbf{c} \in \overline{\mathbb{N}}^{d} \mid \exists \sigma_{\bigcirc} \text { st. } \forall \sigma_{\square}\right. \\
& \left.\operatorname{Cost}\left(\left\langle\sigma_{\bigcirc,}, \sigma_{\square}\right\rangle_{v}\right) \leq \mathrm{c} \mathbf{c} \wedge\left|\left\langle\sigma_{\bigcirc,}, \sigma_{\square}\right\rangle_{v}\right|_{F} \leq k\right\}
\end{aligned}
$$

The algorithm computes, step by step, the sets $\mathrm{I}^{k}(v)$ for all $v \in V$.
For all $k \in \mathbb{N}$ and all $v \in V, \mathrm{I}^{k}(v)=\operatorname{minimal}\left(\right.$ Ensure $\left.^{k}(v)\right)$

There exists $k^{*} \in \mathbb{N}$ such that for all $v \in V$ and for all $\ell \in \mathbb{N}$, $I^{k^{*}}(v)=\mathrm{I}^{k^{*}+\ell}(v)$.

For all $v \in V, \mathrm{I}^{k^{*}}(v)=\operatorname{Pareto}(v)$.

Theorem

The fixpoint algorithm runs in time polynomial in W and $|V|$ and is exponential in d, where W is the maximal weight on an edge.

Computing Pareto(v)

```
for v\inF do IO}(v)={0
for 
repeat
    for }v\inV\mathrm{ do
        if v\inF}\mathrm{ then I I 
            else if v\in\mp@subsup{V}{Q}{}}\mathrm{ then
                    I
            else if v
            \mp@subsup{I}{}{k+1}(v)=\mathrm{ minimal }(\mp@subsup{\bigcap}{\mp@subsup{v}{}{\prime}\in\operatorname{succ}(v)}{}\uparrow\mp@subsup{I}{}{k}(\mp@subsup{v}{}{\prime})+\mathbf{w}(v,\mp@subsup{v}{}{\prime}))
until }\mp@subsup{|}{}{k+1}(v)=\mp@subsup{I}{}{k}(v)\mathrm{ for all }v\in
```


$I^{1}(\cdot)$

$I^{2}(\cdot)$

$I^{3}(\cdot)$

$I^{4}(\cdot)$

$I^{5}(\cdot)$

Pareto-optimal strategies

```
for v}\underline{v\inF}\mathrm{ do IO
for }v\not\in\textrm{F}\mathrm{ do Io (v)={ ( )
repeat
        for }v\inV\mathrm{ do
            if v\inF}\mathrm{ then }\mp@subsup{I}{}{k+1}(v)={0
            else if v\in\mp@subsup{V}{Q}{}}\mathrm{ then
                \mp@subsup{I}{}{k+1}(v)=minimal}(\mp@subsup{\bigcup}{\mp@subsup{v}{}{\prime}\in\operatorname{succ}(v)}{}\uparrow\mp@subsup{I}{}{k}(\mp@subsup{v}{}{\prime})+\mathbf{w}(v,\mp@subsup{v}{}{\prime})
                            for }x\in\mp@subsup{|}{}{k+1}(v) d
                if \underline{x}\in\mp@subsup{I}{}{k}(v)}\mathrm{ then }\mp@subsup{f}{v}{k+1}(\mathbf{x})=\mp@subsup{f}{v}{k}(\mathbf{x}
                else
                            fvve
                            succ}(v),\mathbf{x}=\mp@subsup{\mathbf{x}}{}{\prime}+\mathbf{w}(v,\mp@subsup{v}{}{\prime})\mathrm{ and }\mp@subsup{\mathbf{x}}{}{\prime}\in\mp@subsup{I}{}{k}(\mp@subsup{v}{}{\prime}
            else if v
                \mp@subsup{I}{}{k+1}(v)=\mathrm{ minimal }(\mp@subsup{\bigcap}{\mp@subsup{v}{}{\prime}\in\operatorname{succ}(v)}{}\uparrow\mp@subsup{I}{}{k}(\mp@subsup{v}{}{\prime})+\mathbf{w}(v,\mp@subsup{v}{}{\prime}))
until I
```


Computing Pareto-optimal strategies

$$
\begin{aligned}
& \text { Given } u \in V \text { and } c \in I^{*}(u) \backslash\{\infty\} \text {, we define a strategy } \sigma_{O}^{*} \text { from } \\
& u \text { such that for all } h v \in \operatorname{Hist}(u) \text {, let } \mathcal{C}(h v)=\left\{x^{\prime} \in I^{*}(v)\right. \\
& \left.x^{\prime} \leq c c-\operatorname{Cost}(h v) \wedge x^{\prime} \leq_{L} c-\operatorname{Cost}(h v)\right\}, \\
& \sigma_{\bigcirc}^{*}(h v)= \begin{cases}v^{\prime} & \text { for some } v^{\prime} \in \operatorname{succ}(v), \text { if } \mathcal{C}(h v)=\emptyset \\
f_{v}^{*}(\mathbf{x})[1] & \text { where } \mathbf{x}=\min _{\leq L} \mathcal{C}(h v), \text { if } \mathcal{C}(h v) \neq \emptyset\end{cases}
\end{aligned}
$$

σ_{\bigcirc}^{*} is a c-Pareto-optimal strategy from u.

Memory requirements

Does there exist a strategy σ_{\bigcirc} that ensures $\left(2^{3}-1,2^{3}-1\right)$?

Intuitively:
■ Player \square generates two numbers on 3 bits: x and \bar{x}. Ex: $\downarrow \uparrow \downarrow \rightsquigarrow(x, \bar{x})=(101,010)$.
■ Player \bigcirc has to generate two numbers on 3 bits: y and \bar{y} such that
$1 x+y \leq 2^{3}-1$
[2] $\bar{x}+\bar{y} \leq 2^{3}-1$
$\mathrm{Ex}: \uparrow \downarrow \uparrow \rightsquigarrow(y, \bar{y})=(010,101)$ and so $x+y=\bar{x}+\bar{y}=2^{3}-1$.
■ Since $\bar{x}=\left(2^{3}-1\right)-x, y$ should be equal to \bar{x} to satisfy inequalities (1) and (2).
■ Player \square may generate all numbers between 0 and $2^{3}-1 \rightsquigarrow$ Player \bigcirc has to answer differently with respect to the generated numbers $\rightsquigarrow 2^{3}$ combinations to keep in memory.
\rightsquigarrow This example may be generalized to n bits \rightsquigarrow we need strategies with exponential memory.

Conclusion

Conclusion

	Componentwise order	Lexicographic order
minimal(Ensure $(v))$	in exponential time	in polynomial time
CEP	PSPACE-complete	in P

■ uniform approach to compute minimal(Ensure(v)) both for the componentwise order and the lexicographic order \rightsquigarrow fixpoint algorithm;
■ (Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;

- Pareto-optimal strategies may require memory (in the componentwise order case).
- Rem: The CEP with the componentwise order is undecidable with negative weights and four dimensions [Ran23].

Mickael Randour.
Games with multiple objectives.
In Nathanaël Fijalkow, editor, Games on Graphs. 2023.
Stephen D. Travers.
The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci., 369(1-3):211-229, 2006.

