Multi-weighted Reachability Games

Thomas $BRIHAYE^1$ and <u>Aline GOEMINNE</u>²

UMONS – Université de Mons, Belgium.
 F.R.S.-FNRS & UMONS – Université de Mons, Belgium.

RP'23

2 Studied problems

- Constrained Existence Problem
- Computing the Pareto frontier
- Memory requirements

Is it possible to reach \bigcirc with cost $\leq c$?

Is it possible to reach with cost $\leq c$?

Is it possible to reach Owhatever the behavior of the **environment** with $\cot \le c$?

- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d});$
- Two players: Player \bigcirc and Player \Box ;
- Turn-based.

A play: v₀

- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d});$
- Two players: Player () and Player ();
- Turn-based.

A play: $v_0 v_2$

- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d});$
- Two players: Player () and Player ();
- Turn-based.

A play: $v_0v_2v_4$

- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d});$
- Two players: Player \bigcirc and Player \Box ;
- Turn-based.

A play: v₀v₂v₄v₇

- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d});$
- Two players: Player \bigcirc and Player \Box ;
- Turn-based.

A play: $v_0 v_2 v_4 v_7 \odot$

- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d});$
- Two players: Player \bigcirc and Player \Box ;
- Turn-based.

A play: $v_0 v_2 v_4 v_7 \odot^{\omega}$

Quantitative reachability objective

Given a target set $F \subseteq V$, for all plays $\rho = \rho_0 \rho_1 \dots$:

$$\mathsf{Cost}_i(
ho) = egin{cases} \sum_{n=0}^{k-1} w_i(
ho_n,
ho_{n+1}) & ext{if } k ext{ is the least} \\ & ext{index st.}
ho_k \in \mathsf{F} \\ +\infty & ext{otherwise} \end{cases}$$

<u>Rem:</u> same target set for all dimensions. <u>Ex:</u>

- $\operatorname{Cost}(v_0 v_3 (v_5 v_8)^{\omega}) =$ $(\operatorname{Cost}_1(v_0 v_3 (v_5 v_8)^{\omega}), \operatorname{Cost}_2(v_0 v_3 (v_5 v_8)^{\omega})) =$ $(+\infty, +\infty)$
- $\operatorname{Cost}(v_0v_2v_4v_7^{\odot}) = (6,10)$

- A strategy for Player \bigcirc : $\sigma_{\bigcirc}: V^*V_{\bigcirc} \longrightarrow V$.
- Given a strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ and an initial vertex $v_0 \rightsquigarrow$ only one consistent play $\langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{v_0}$ called the **outcome**.

 $\underline{\mathsf{Ex:}} \ \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_2 v_4 v_7 \textcircled{\odot}^{\omega}.$

 $\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathbf{c} = (c_1, \ldots, c_d)$

<u>Ex</u>:

($(8,8) \rightsquigarrow$ Yes. (with memory!)

 $\longmapsto \qquad (8,8)$

 $\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathsf{c} = (c_1, \ldots, c_d)$

<u>Ex</u>:

(8,8) \rightsquigarrow Yes. (with memory!)

 $\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathbf{c} = (c_1, \ldots, c_d)$

<u>Ex</u>:

($(8,8) \rightsquigarrow$ Yes. (with memory!)

 $\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathbf{c} = (c_1, \ldots, c_d)$

Ex:

(8,8) \rightsquigarrow Yes. (with memory!)

 $\label{eq:player} \begin{array}{c} \bigcirc \\ \mbox{can} \mbox{ adapt his strategy in function of the choice of Player} \\ \square \\ \mbox{ ~~} \\ \mbox{ finite-memory strategy! } \end{array}$

 $\mathsf{Ensure}(\mathbf{v}) = \{ \mathbf{c} \in \overline{\mathbb{N}}^d \mid \exists \sigma_{\bigcirc} \text{ st. } \forall \sigma_{\Box}, \mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{\mathbf{v}}) \leq_{\mathsf{C}} \mathbf{c} \}.$

minimal(Ensure(v)) = Pareto(v) \rightsquigarrow **Pareto frontier** from v.

For $\mathbf{c} = (c_1, \ldots, c_d) \in \text{Pareto}(v)$, a strategy σ_{\bigcirc} is **c**-Pareto-optimal if σ_{\bigcirc} ensures **c** from *v*.

Studied problems

Studied problems

1 Decide the **constrained existence problem**.

2 Compute the Pareto frontier and Pareto-optimal strategies.

Constrained existence problem (CEP)

Given a game, a vertex $v \in V$ and $\mathbf{c} \in \mathbb{N}^d$, does there exist a strategy σ_{\bigcirc} of Player \bigcirc such that for all strategies of Player \Box , we have:

 $\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathsf{c}$

Constrained Existence Problem

Given $v \in V$ and $\mathbf{x} \in \mathbb{N}^d$, if there exists σ_{\bigcirc} such that for all σ_{\square} we have: $\text{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_v) \leq_C \mathbf{x}$ then,

there exists σ'_{\bigcirc} such that for all σ_{\Box} ,

- $\operatorname{Cost}(\langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{\nu}) \leq_{\mathsf{C}} \mathbf{x};$
- $\blacksquare \ \left| \langle \sigma'_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}} \right|_{\mathsf{F}} \leq |V|$

 \rightsquigarrow simulation of the game by an alternating Turing machine during at most |V| steps.

Since APTIME = PSPACE:

In two-player multi-weighted reachability games, the CE problem belongs to $\ensuremath{\operatorname{PSPACE}}$.

In two-player multi-weighted reachability games, the CE problem is PSPACE -hard.

 \rightsquigarrow Reduction from the Quantified Subset-Sum problem.

Quantified Subset-Sum Problem

Given a set of natural numbers $N = \{a_1, \ldots, a_n\}$ and a threshold $T \in \mathbb{N}$, we ask if the formula

$$\Psi = \exists x_1 \in \{0,1\} \, \forall x_2 \in \{0,1\} \, \exists x_3 \in \{0,1\} \dots \exists x_n \in \{0,1\}, \, \sum_{1 \le i \le n} x_i a_i = T$$

is true.

This problem is proved to be PSPACE-complete [Tra06, Lemma 4].

Computing the Pareto frontier

Computing Pareto(v)

$$\begin{split} \mathsf{Ensure}^k(\mathbf{v}) &= \{ \mathbf{c} \in \overline{\mathbb{N}}^d \mid \exists \sigma_{\bigcirc} \text{ st. } \forall \sigma_{\square}, \\ \mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathbf{v}}) \leq_{\mathsf{C}} \mathbf{c} \wedge | \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathbf{v}} |_{\mathsf{F}} \leq k \}. \end{split}$$

The algorithm computes, step by step, the sets $I^{k}(v)$ for all $v \in V$.

For all $k \in \mathbb{N}$ and all $v \in V$, $I^k(v) = minimal(Ensure^k(v))$

There exists $k^* \in \mathbb{N}$ such that for all $v \in V$ and for all $\ell \in \mathbb{N}$, $I^{k^*}(v) = I^{k^*+\ell}(v)$.

For all $v \in V$, $I^{k^*}(v) = Pareto(v)$.

Theorem

The fixpoint algorithm runs in time polynomial in W and |V| and is **exponential** in d, where W is the maximal weight on an edge.

Computing Pareto(v)

for $v \in F$ do $I^{0}(v) = \{0\}$ for $v \notin \mathsf{F}$ do $\mathsf{I}^0(v) = \{\infty\}$ repeat for $v \in V$ do if $v \in \mathsf{F}$ then $\mathsf{I}^{k+1}(v) = \{\mathbf{0}\}$ else if $v \in V_{\bigcirc}$ then $I^{k+1}(v) = \min(\bigcup_{v' \in \operatorname{Super}(v)} \uparrow I^{k}(v') + \mathbf{w}(v, v'))$ else if $v \in V_{\Box}$ then $| I^{k+1}(v) = \min(\bigcap_{v \in \operatorname{cons}(v)} \uparrow I^{k}(v') + \mathbf{w}(v, v'))$ until $I^{k+1}(v) = I^k(v)$ for all $v \in V$

 $I^{5}(\cdot)$

Pareto-optimal strategies

for $v \in F$ do $I^{0}(v) = \{0\}$ for $v \notin F$ do $I^0(v) = \{\infty\}$ repeat for $v \in V$ do **if** $v \in \mathsf{F}$ then $\mathsf{I}^{k+1}(v) = \{\mathbf{0}\}$ else if $v \in V_{\bigcirc}$ then $\mathsf{I}^{k+1}(v) = \mathsf{minimal}\left(\bigcup_{v' \in \mathsf{super}(v)} \uparrow \mathsf{I}^{k}(v') + \mathbf{w}(v, v')\right)$ for $\mathbf{x} \in \mathbf{I}^{k+1}(\mathbf{v})$ do $\overrightarrow{\mathbf{if} \mathbf{x} \in I^k(v)}$ then $f_v^{k+1}(\mathbf{x}) = f_v^k(\mathbf{x})$ else $\begin{aligned} f_{v}^{k+1}(\mathbf{x}) &= (v', \mathbf{x}') \text{ where } v' \text{ and } \mathbf{x}' \text{ are such that } v' \in \\ \operatorname{succ}(v), \mathbf{x} &= \mathbf{x}' + \mathbf{w}(v, v') \text{ and } \mathbf{x}' \in I^{k}(v') \end{aligned}$ else if $v \in V_{\Box}$ then $I^{k+1}(v) = \min\left(\bigcap_{v' \in \mathsf{surr}(v)} \uparrow I^k(v') + \mathbf{w}(v, v')\right)$ until $I^{k+1}(v) = I^k(v)$ for all $v \in V$

Computing Pareto-optimal strategies

Given $u \in V$ and $\mathbf{c} \in I^*(u) \setminus \{\infty\}$, we define a strategy σ_{\bigcirc}^* from u such that for all $hv \in \text{Hist}_{\bigcirc}(u)$, let $\mathcal{C}(hv) = \{\mathbf{x}' \in I^*(v) \mid \mathbf{x}' \leq_{\mathsf{C}} \mathbf{c} - \text{Cost}(hv) \land \mathbf{x}' \leq_{\mathsf{L}} \mathbf{c} - \text{Cost}(hv)\},\$

$$\sigma^*_{\bigcirc}(hv) = \begin{cases} v' & \text{for some } v' \in \text{succ}(v), \text{ if } \mathcal{C}(hv) = \emptyset \\ f^*_v(\mathbf{x})[1] & \text{where } \mathbf{x} = \min_{\leq_{\mathrm{L}}} \mathcal{C}(hv), \text{ if } \mathcal{C}(hv) \neq \emptyset \end{cases}$$

 σ^*_{\bigcirc} is a **c**-Pareto-optimal strategy from *u*.

Memory requirements

Does there exist a strategy σ_{\bigcirc} that ensures $(2^3 - 1, 2^3 - 1)$?

Intuitively:

- Player \Box generates two numbers on 3 bits: x and \overline{x} . Ex: $\downarrow \uparrow \downarrow \rightsquigarrow (x, \overline{x}) = (101, 010)$.
- Player has to generate two numbers on 3 bits: y and y such that
 x + y ≤ 2³ 1
 x + y ≤ 2³ 1

Ex: $\uparrow \downarrow \uparrow \rightsquigarrow (y, \overline{y}) = (010, 101)$ and so $x + y = \overline{x} + \overline{y} = 2^3 - 1$.

- Since $\overline{x} = (2^3 1) x$, y should be equal to \overline{x} to satisfy inequalities (1) and (2).
- Player □ may generate all numbers between 0 and 2³ 1 → Player has to answer differently with respect to the generated numbers → 2³ combinations to keep in memory.

 \rightsquigarrow This example may be generalized to *n* bits \rightsquigarrow we need strategies with **exponential memory**.

Conclusion

	Componentwise order	Lexicographic order
minimal(Ensure(v))	in exponential time	in polynomial time
CEP	PSPACE-complete	in P

- uniform approach to compute minimal(Ensure(v)) both for the componentwise order and the lexicographic order ~> fixpoint algorithm;
- (Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;
- Pareto-optimal strategies may require memory (in the componentwise order case).
- <u>Rem</u>: The CEP with the componentwise order is undecidable with negative weights and four dimensions [Ran23].

Mickael Randour.

Games with multiple objectives.

In Nathanaël Fijalkow, editor, Games on Graphs. 2023.

Stephen D. Travers.

The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci., 369(1-3):211–229, 2006.