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Is it possible to reach © with cost < ¢?
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Two-player Multi-weighted Reachability Games

m A d-weighted graph G = (V, E, (wi)1<i<d);
m Two players: Player O and Player [J;

m Turn-based.

(4,2) (2,4)

@ 68 A play: v
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Two-player Multi-weighted Reachability Games

(4,2) (2,4)

m A d-weighted graph G = (V, E, (wi)1<i<d);
m Two players: Player O and Player [J;

m Turn-based.
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Two-player Multi-weighted Reachability Games

Quantitative reachability objective

(4,2) (2,4) :
Given a target set F C V/, for all plays p =

pPopP1 ..t

k—1

Z wi(pn, pnt1)  if k is the least

Costi(p) = ¢ =0
2 index st.px € F

+00 otherwise

(4,2) (2,4)

Rem: same target set for all dimensions.
ONONGCHEEN-
m Cost(vovs(vsvs)“) =
(Cost1(vovs(vsvs)“), Costa(vovs(vsvs)®)) =
(++00, +00)

@@ m Cost(vovavavy©“) = (6, 10)
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Two-player Multi-weighted Reachability Games

m A strategy for Player O: o : V*Vo — V.

m Given a strategy profile (0, o) and an initial
vertex vp ~~ only one consistent play (oo, o)y,
called the outcome.

Ex: <UO>UD>V0 = vvauav,@”.
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Player (O can ensure a cost profile ¢ =
(c1,...,¢cq) from v if there exists a strat-
egy oo such that for all strategies op of
Player [:

Cost((co,0m)v) <cc = (c1,-..,¢cq)

Ex:

m (8,8) ~» Yes. (with memory!)

I — [ (8,8)
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Player (O can ensure a cost profile ¢ =
(c1,...,¢cq) from v if there exists a strat-
egy oo such that for all strategies op of
Player [:

Cost((co,0m)v) <cc = (c1,-..,¢cq)

Ex:

m (8,8) ~» Yes. (with memory!)
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Player (O can ensure a cost profile ¢ =
(c1,...,¢cq) from v if there exists a strat-
egy oo such that for all strategies op of
Player [:

Cost((co,0m)v) <cc = (c1,-..,¢cq)

Ex:

m (8,8) ~» Yes. (with memory!)
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Player (O can ensure a cost profile ¢ =

(c1,...,¢cq) from v if there exists a strat-
egy oo such that for all strategies op of
Player [:

Cost((co,0m)v) <cc = (c1,-..,¢cq)

Ex:

m (8,8) ~» Yes. (with memory!)

(4:2) (2.4) B — mmmm  (89)

— I (8,8)
@ ( I — I (7,5)

Player (O can adapt his strategy in function of the
choice of Player [J ~» finite-memory strategy!
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Ensure(v) = {c € N | 3o st. Yog, Cost({co,on)v) <cc}.
minimal(Ensure(v)) = Pareto(v) ~+ Pareto frontier from v.

Forc = (ci, ..., ca) € Pareto(v), a strategy o is c-Pareto-optimal if o ensures
c from v.
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Studied problems

Decide the constrained existence problem.

Compute the Pareto frontier and Pareto-optimal strategies.

Constrained existence problem (CEP)
Given a game, a vertex v € V and ¢ € N,
does there exist a strategy o of Player O such that for all strategies of

Player [J, we have:

Cost((co,om)v) <cc
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Constrained Existence Problem
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Given v € V and x € N7, if there exists o such
that for all og we have: Cost((co,om)v) <cx
then,

there exists o such that for all og,
m Cost({o,0m)v) <cX;
m [(05,00)v|e < |V
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~ simulation of the game by an alternating Turing machine during at most |V/| steps.

Since APTIME = PSPACE:

In two-player multi-weighted reachability games, the CE problem belongs to
PSPACE.

In two-player multi-weighted reachability games, the CE problem is PSPACE-hard.

~» Reduction from the Quantified Subset-Sum problem.

Quantified Subset-Sum Problem

Given a set of natural numbers N = {a1,...,an} and a threshold T € N, we ask
if the formula

V=3x€{0,1}Vec{0,1}3x € {0,1}...3x, € {0,1}, > xa=T

1<i<n

is true.

This problem is proved to be PSPACE-complete [Tra06, Lemma 4].
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Computing the Pareto frontier
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Computing Pareto(v)

Ensure®(v) = {c € N’ | 3o st. Yoo,
Cost({o0, 0m)v) <cecA (oo, on)v|F < k}.

The algorithm computes, step by step, the sets 1“(v) for all v € V.

For all k € N and all v € V, 1¥(v) = minimal(Ensure*(v))

There exists k* € N such that for all v € V and for all £ € N,
1K (v) = 1" T(v).

For all v € V, I¥"(v) = Pareto(v).

Theorem

The fixpoint algorithm runs in time polynomial in W and |V/| and
is exponential in d,

where W is the maximal weight on an edge.
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Computing Pareto(v)

for v € F do I°(v) = {0}
for v ¢ F do 1°(v) = {c0}

repeat
for v € V do
if v € F then I“"!(v) = {0}

else if v € Vo then

1*1(v) = minimal U 1) +w(v, v'))

v/ €succ(v)

else if v € Vg then

1*1(v) = minimal N 1) +w(v, v'))

v/ Esuce(v)

until I“F1(v) = 1¥(v) forall v € V
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(4,2) (2,4)

@y @y (e () () {0

{(0.0)} - SQ—(w){(1. 1)}
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(w) () {(0,0))

(4,2) (2,4)

R CIER O ONC

{(5,3),(3,5)}

s

{(2,2)}

{(0.0)} - SQ—(w){(1. 1)}
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(4,2) (2,4)
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Pareto-optimal strategies

for v € F do I°(v) = {0}
for v ¢ F do 1°(v) = {c0}

repeat
for v € V do
if v €F then I“'(v) = {0}

else if v € Vo then

4 (v) = minimal [ ) 15(v)) + w(v, v')>
v/ €succ(v)
for x € I"**(v) do
if x € I¥(v) then £ (x) = £(x)
else
f¥(x) = (v/,x') where v/ and x’ are such that v/ €
‘ suce(v), x =x' +w(v,v') and x’ € I*(V')

else if v € Vg then

1*1(v) = minimal m TIE) + w(v, v'))

v/ €succ(v)

until I“F1(v) = 1¥(v) forall v € V
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Computing Pareto-optimal strategies

v/ for some v’ € succ(v), if C(hv) =0

oo(hv) = {fv*(x)[l] where x = min<, C(hv), if C(hv) # 0

05 is a c-Pareto-optimal strategy from u.
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Memory requirements
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0,2° (0,2)

(0.2%) (
.02 o AL

0,2°%) (0,24

)

207 0)

( (0.2%)
Oe HeOGN DN

Does there exist a strategy o that ensures (2° — 1,23 —1)?

Intuitively:

m Player OJ generates two numbers on 3 bits: x and X. Ex: |1 ~ (x,X) = (101, 010).
m Player () has to generate two numbers on 3 bits: y and y such that

x+y<235-1

Xx+y<23-1

Ex: 111 ~ (y,¥) = (010,101) and so x + y =x+y = 2> — 1.

m Since X = (2% — 1) — x, y should be equal to X to satisfy inequalities (1) and (2).
m Player [0 may generate all numbers between 0 and 2° — 1 ~» Player O has to answer

differently with respect to the generated numbers ~» 23 combinations to keep in
memory.

~+ This example may be generalized to n bits ~~ we need strategies with exponential
memory.
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Conclusion

H Componentwise order | Lexicographic order

minimal(Ensure(v)) in exponential time in polynomial time
CEP PSPACE-complete in P

uniform approach to compute minimal(Ensure(v)) both for the componentwise
order and the lexicographic order ~~ fixpoint algorithm;

(Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;

Pareto-optimal strategies may require memory (in the componentwise order case).

m Rem: The CEP with the componentwise order is undecidable with negative weights
and four dimensions [Ran23].
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