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Reachability Games
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Is it possible to reach with cost  c?

Is it possible to reach

whatever the behavior of

the environment with
cost  c?

Is it possible to reach

with cost  (c1, c2)?

Is it possible to reach whatever the behavior of the

environment with cost  (c1, c2)?
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v1 v2 v3
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(4, 2) (2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

A d-weighted graph G = (V ,E , (wi )1id);

Two players: Player � and Player ⇤;
Turn-based.

A play: v0

v2v4v7
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Two-player Multi-weighted Reachability Games
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(4, 2) (2, 4)

Quantitative reachability objective

Given a target set F ✓ V , for all plays ⇢ =

⇢0⇢1 . . .:

Costi (⇢) =

8
>>>><

>>>>:

k�1X

n=0

wi (⇢n, ⇢n+1) if k is the least

index st.⇢k 2 F

+1 otherwise

Rem: same target set for all dimensions.

Ex:

Cost(v0v3(v5v8)!) =
(Cost1(v0v3(v5v8)!),Cost2(v0v3(v5v8)!)) =
(+1,+1)

Cost(v0v2v4v7
!
) = (6, 10)
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Two-player Multi-weighted Reachability Games
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A strategy for Player �: �� : V ⇤V� �! V .

Given a strategy profile (��,�⇤) and an initial

vertex v0  only one consistent play h��,�⇤iv0
called the outcome.
Ex: h��,�⇤iv0 = v0v2v4v7

!
.
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(4, 2)(4, 2) (2, 4)
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v6 v7 v8

v9

(4, 2)

(4, 2)

(2, 4)(2, 4)

Player � can ensure a cost profile c =

(c1, . . . , cd) from v if there exists a strat-

egy �� such that for all strategies �⇤ of

Player ⇤:

Cost(h��,�⇤iv )C c = (c1, . . . , cd)

Ex:

(8, 8)  Yes. (with memory!)

7�! (8, 8)

7�! (8, 8)

7�! (7, 5)

Player � can adapt his strategy in function of the

choice of Player ⇤  finite-memory strategy!
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Ensure(v) = {c 2 Nd | 9�� st. 8�⇤, Cost(h��,�⇤iv )C c}.

minimal(Ensure(v)) = Pareto(v)  Pareto frontier from v .

For c = (c1, . . . , cd) 2 Pareto(v), a strategy �� is c-Pareto-optimal if �� ensures

c from v .

Aline Goeminne Multi-weighted Reachability Games 9



Studied problems



Studied problems

1 Decide the constrained existence problem.

2 Compute the Pareto frontier and Pareto-optimal strategies.

Constrained existence problem (CEP)

Given a game, a vertex v 2 V and c 2 Nd
,

does there exist a strategy �� of Player � such that for all strategies of

Player ⇤, we have:

Cost(h��,�⇤iv )C c
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Constrained Existence Problem
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Given v 2 V and x 2 Nd
, if there exists �� such

that for all �⇤ we have: Cost(h��,�⇤iv )C x
then,

there exists �0
� such that for all �⇤,

Cost(h�0
�,�⇤iv )C x;

|h�0
�,�⇤iv |

F
 |V |
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 simulation of the game by an alternating Turing machine during at most |V | steps.

Since APtime = PSpace:

In two-player multi-weighted reachability games, the CE problem belongs to

PSpace.

In two-player multi-weighted reachability games, the CE problem is PSpace-hard.

 Reduction from the Quantified Subset-Sum problem.

Quantified Subset-Sum Problem

Given a set of natural numbers N = {a1, . . . , an} and a threshold T 2 N, we ask

if the formula

 = 9x1 2 {0, 1} 8x2 2 {0, 1} 9x3 2 {0, 1} . . . 9xn 2 {0, 1},
X

1in

xiai = T

is true.

This problem is proved to be PSpace-complete [Tra06, Lemma 4].
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Computing the Pareto frontier
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Computing Pareto(v)

Ensure
k
(v) = {c 2 Nd | 9�� st. 8�⇤,

Cost(h��,�⇤iv )C c^ |h��,�⇤iv |F  k}.

The algorithm computes, step by step, the sets I
k
(v) for all v 2 V .

For all k 2 N and all v 2 V , I
k
(v) = minimal(Ensure

k
(v))

There exists k⇤ 2 N such that for all v 2 V and for all ` 2 N,
I
k⇤
(v) = I

k⇤+`
(v).

For all v 2 V , I
k⇤
(v) = Pareto(v).

Theorem

The fixpoint algorithm runs in time polynomial in W and |V | and
is exponential in d ,
where W is the maximal weight on an edge.
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Computing Pareto(v)

for v 2 F do I
0
(v) = {0}

for v 62 F do I
0
(v) = {1}

repeat
for v 2 V do

if v 2 F then I
k+1

(v) = {0}

else if v 2 V� then

I
k+1

(v) = minimal

0

@
[

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

else if v 2 V⇤ then

I
k+1

(v) = minimal

0

@
\

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

until Ik+1
(v) = I

k
(v) for all v 2 V
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{(1,1)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(6, 4), (4, 6)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

I0(·)I1(·)I2(·)I3(·)I4(·)

I5(·)
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Pareto-optimal strategies

for v 2 F do I
0
(v) = {0}

for v 62 F do I
0
(v) = {1}

repeat
for v 2 V do

if v 2 F then I
k+1

(v) = {0}

else if v 2 V� then

I
k+1

(v) = minimal

0

@
[

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

for x 2 I
k+1

(v) do
if x 2 I

k
(v) then f k+1

v (x) = f kv (x)
else

f k+1

v (x) = (v 0, x0) where v 0
and x0 are such that v 0 2

succ(v), x = x0 + w(v , v 0
) and x0 2 I

k
(v 0

)

else if v 2 V⇤ then

I
k+1

(v) = minimal

0

@
\

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

until Ik+1
(v) = I

k
(v) for all v 2 V
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Computing Pareto-optimal strategies

Given u 2 V and c 2 I
⇤
(u)\{1}, we define a strategy �⇤

� from

u such that for all hv 2 Hist�(u), let C(hv) = {x0 2 I
⇤
(v) |

x0 C c� Cost(hv) ^ x0 L c� Cost(hv)},

�⇤
�(hv) =

(
v 0

for some v 0 2 succ(v), if C(hv) = ;
f ⇤v (x)[1] where x = minL

C(hv), if C(hv) 6= ;
.

�⇤
� is a c-Pareto-optimal strategy from u.
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Memory requirements
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b1 b2 b3 c1 c2 c3
(0, 20)

(2
0, 0)

(0, 21)

(2
1, 0)

(0, 22)

(2
2, 0)

(0, 20)

(2
0, 0)

(0, 21)

(2
1, 0)

(0, 22)

(2
2, 0)

Does there exist a strategy �� that ensures (2
3 � 1, 23 � 1)?

Intuitively:

Player ⇤ generates two numbers on 3 bits: x and x . Ex: #"#  (x , x) = (101, 010).

Player � has to generate two numbers on 3 bits: y and y such that

1 x + y  23 � 1

2 x + y  23 � 1

Ex: "#"  (y , y) = (010, 101) and so x + y = x + y = 2
3 � 1.

Since x = (2
3 � 1)� x , y should be equal to x to satisfy inequalities (1) and (2).

Player ⇤ may generate all numbers between 0 and 2
3 � 1  Player � has to answer

di↵erently with respect to the generated numbers  2
3
combinations to keep in

memory.

 This example may be generalized to n bits  we need strategies with exponential
memory.
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Conclusion



Conclusion

Componentwise order Lexicographic order

minimal(Ensure(v)) in exponential time in polynomial time

CEP PSpace-complete in P

uniform approach to compute minimal(Ensure(v)) both for the componentwise

order and the lexicographic order  fixpoint algorithm;

(Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;

Pareto-optimal strategies may require memory (in the componentwise order case).

Rem: The CEP with the componentwise order is undecidable with negative weights

and four dimensions [Ran23].
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