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Related Models



One-player Reachability Games
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One-player Reachability Games

v0

v1 v2 v3

v4 v5

4 2

v6 v7 v8

v9

4 2

A weighted graph G = (V ,E ,w);

One player: Player �.

Quantitative reachability objective

Given a target set F ✓ V , for all plays (infinite
paths in G) ⇢ = ⇢0⇢1 . . .:

Cost(⇢) =

8
>>>><

>>>>:

k�1X

n=0

w(⇢n, ⇢n+1) if k is the least

index st.⇢k 2 T

+1 otherwise

Ex:

Cost(v0v2v4v7( )!) = 6;

Cost(v0v3(v5v8)!) = +1
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Constrained existence

v0

v1 v2 v3

v4 v5

4 2

v6 v7 v8

v9

4 2

Strategy: �� : V ⇤V� �! V
Outcome:

h��iv0  v0v3v4v7( )!;

Cost(h��iv0) = 5.

Constrained existence (CE) problem

Given v 2 V and k 2 N , does there exist ��,
such that

Cost(h��iv )  k?

Ex:

with k = 7 and v = v0  YES;

with k = 3 and v = v0  NO.

 studying shortest paths in the game graph
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Optimality

v0 5

v1 4 v2 4 v3 4

v4 3 v5 3

4 2

v6 1 v7 1 v8 2

0

v9 1

4 2

How to find shortest paths?

Dijkstra algorithm;

Bellman-Ford algorithm;

...

Main idea

X (v) = 0 if v 2 F and = 1 otherwise

Repeat: Xpre = X , for all v 2 V \F,
X (v) = min

v02succ(v)
{Xpre(v 0) + w(v , v 0)}

 only computing some minimum.

In a one-player reachability game:

the CE problem belongs to P;

computing the shortest path can be
done in polynomial time.
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Two-player Reachability Games
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Two-player Reachability Games

v0

v1 v2 v3

v4 v5

4 2

v6 v7 v8

v9

4 2

A weighted graph G = (V ,E ,w);
Two players: Player � and Player ⇤;

Player � wants to reach F ASAP;
Player ⇤ wants to avoid that.

Constrained existence (CE) problem

Given v 2 V and k 2 N, does there exist
��, such that for all �⇤,

Cost(h��,�⇤iv )  k

Ex:

With k = 7, NO!

With k = 8, Yes.

 value Val(v) of a vertex v .
 optimal strategies.
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Two-player Reachability Games
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4 2
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Optimality

v0 8

v1 4 v2 4 v3 4

v4 3 v5 3

4 2

v6 1 v7 1 v8 2

0

v9 1

4 2

Main idea

If v 2 F, I0(v) = 0 and = 1 otherwise.
k  k + 1. For all v 2 V :

If v 2 V�:

Ik+1(v) = min
v02succ(v)

(Ik (v) + w(v , v 0)).

If v 2 V⇤:
Ik+1(v) = maxv02succ(v)(I

k (v)+w(v , v 0)).

In a two-player reachability game:

The CE problem belongs to P.

Computing for all v 2 V , Val(v) can be
done in polynomial time.

There exist memoryless optimal strategies.

E.g.,[BGHM15]: To Reach or not to Reach? E�cient Algorithms for Total-Payo↵ Games, T. Brihaye at al.,
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One-player Multi-weighted Reachability Games
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One-Player Multi-Weighted Reachability Games

v0

v1 v2 v3

v4 v5

(4, 2) (2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

A d-weighted graph G = (V ,E , (wi )1id);

A player: Player �;

Quantitative reachability objective

Given a target set F ✓ V , for all plays ⇢ =
⇢0⇢1 . . . and all 1  i  d :

Costi (⇢) =

8
>>>><

>>>>:

k�1X

n=0

wi (⇢n, ⇢n+1) if k is the least

index st.⇢k 2 F

+1 otherwise

Rem: same target set F for all dimensions.

For all ⇢ 2 Plays, Cost(⇢) = (Costi (⇢))1id .
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Constrained existence

v0

v1 v2 v3

v4 v5

(4, 2) (2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

Componentwise order C: for all a, b 2 Nd
,

aC b , ai  bi , 81  i  d

Constrained existence (CE) problem

Given v 2 V and (k1, . . . , kd) 2 Nd , does there
exist ��, such that

Cost(h��iv )C(k1, . . . , kd)?

Ex:

With (k1, k2) = (8, 8) and and v = v0: YES!

With (k1, k2) = (4, 4) and and v = v0: NO!

Ensure(v) = {x 2 Nd | 9��,

Cost(h��iv )C x}.
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Optimality

v0

v1 v2 v3

v4 v5

(4, 2) (2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

What about optimality?

From v0: (10, 6), (6, 10), (7, 5), (5, 7), (5, 5),
(5 + 2n, 5 + 2n) for all n 2 N.

⇤
(10, 6)

⇤
(6, 10)

⇤
(7, 5)

⇤
(5, 7)

⌅
(5, 5)

 you would rather get (5, 5).

From v4, do you prefer (5, 3) or (3, 5)?

⌅
(5, 3)

⌅
(3, 5)
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Optimality

Let X 0 ✓ X .

minimal(X 0) = {x 2 X 0 | (y 2 X 0 ^ y C x) =) y = x};
" X 0 = {x 2 X | 9y 2 X 0, y C x};

Optimality – Pareto frontier

For v 2 V , we want to compute the set:

Pareto(v) = minimal(Ensure(v))
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Optimality

Main idea [PT02]

For all v 2 F, I0(v) = 0d and = 1d otherwise;

k  k + 1: v 2 V ,

Ik+1(v) =

8
>><

>>:

0d if v 2 F

minimal

0

@
[

v02succ(v)

Ik(v 0) + w(v , v 0)

1

A otherwise
.

With
X + k = {x+ k | x 2 X}
for all x, y 2 Nd

, z = x+ y is such that for all 1  i  d , zi = xi + yi .

[PT02]: Algorithms for the Multi-constrained Routing Problem, Anuj Puri and Stavros Tripakis, SWAT 2002.
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Optimality

v0

v1 v2 v3

v4 v5

(4, 2) (2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(1,1)} {(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(0, 0)} {(1,1)}

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(1,1)} {(1,1)}

{(1, 1)}{(1, 1)} {(1,1)}

{(0, 0)} {(1, 1)}

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(5, 3), (3, 5)} {(1,1)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

minimal({(6, 4), (4, 6)}+ (4, 2)
[{(6, 4), (4, 6)}+ (2, 4)
[{(6, 4), (4, 6) + (1, 2))
= minimal({(10, 6), (6, 10), (8, 8), (7, 5), (5, 7)})
= {(7, 5), (5, 7)}

{(1,1)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(6, 4), (4, 6))}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(7, 5), (5, 7)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(5, 5)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}
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Optimality

v0

v1 v2 v3
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v6 v7 v8

v9

(4, 2) (2, 4)
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{(1,1)} {(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(0, 0)} {(1,1)}

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(1,1)} {(1,1)}

{(1, 1)}{(1, 1)} {(1,1)}

{(0, 0)} {(1, 1)}

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(5, 3), (3, 5)} {(1,1)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

minimal({(6, 4), (4, 6)}+ (4, 2)
[{(6, 4), (4, 6)}+ (2, 4)
[{(6, 4), (4, 6) + (1, 2))
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{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(5, 5)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}
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Results

[PT02] In one-player multi-weighted reachability games:

The CE problem is NP-complete .
The algorithm to compute Pareto frontiers for all v 2 V is

polynomial in
W = max{w 2 N | 91  i  d , 9e 2 E , wi (e) = w};
exponential in d .

[PT02]: Algorithms for the Multi-constrained Routing Problem, Anuj Puri and Stavros Tripakis, SWAT 2002.
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Two-player Multi-weighted Reachability Games



Two-player Multi-weighted Reachability Games

v0

v1 v2 v3

v4 v5

(4, 2) (2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

A multi-weighted graph G = (V ,E , (wi )1id);

Two players: Player � and Player ⇤.

Constrained existence (CE) problem

Given v 2 V and x 2 Nd
, does there exist

�� st. for all �⇤,

Cost(h��,�⇤iv )C x?

Rem: It is not possible to ensure (5, 5).

Aline Goeminne A stroll with reachability games 20



Optimality

Ensure(v) = {x 2 Nd | 9�� st. 8�⇤, Cost(h��,�⇤iv )C x}

Optimality – Pareto frontier

For v 2 V , we want to compute Pareto(v) = minimal(Ensure(v)).

Given v 2 V and x 2 Pareto(v),
�� is x-Pareto-optimal from v , if for all �⇤, Cost(h��,�⇤iv )C x

Memory requirement for Pareto-optimal strategies

Given v 2 V and x 2 Pareto(v), which amount of memory is
required by a x-Pareto-optimal strategy?
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Studied problems

[BG23] In two-player multi-weighted reachability games:

The CE problem is PSpace-complete. (Rem: NP-complete
if restricted to memoryless strategies.)

Computing the Pareto frontier for all v 2 V can be done in
time polynomial in the size of the graph and W and
exponential in d .

Pareto-optimal strategies sometimes require memory.

[BG23]: Multi-weighted Reachability Games, T. Brihaye and A. Goeminne, to appear in RP 2023.
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Constrained Existence Problem
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Given v 2 V and x 2 Nd , if there exists �� such
that for all �⇤ we have: Cost(h��,�⇤iv )C x
then,

there exists �0
� such that for all �⇤,

Cost(h�0
�,�⇤iv )C x;

|h�0
�,�⇤iv |F  |V |
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 simulation of the game by an alternating Turing machine during at most |V | steps.

Since APtime = PSpace:

In two-player multi-weighted reachability games, the CE problem belongs to
PSpace.

In two-player multi-weighted reachability games, the CE problem is PSpace-hard.

 Reduction from the Quantified Subset-Sum problem.

Quantified Subset-Sum Problem

Given a set of natural numbers N = {a1, . . . , an} and a threshold T 2 N, we ask
if the formula

 = 9x1 2 {0, 1} 8x2 2 {0, 1} 9x3 2 {0, 1} . . . 9xn 2 {0, 1},
X

1in

xiai = T

is true.

This problem is proved to be PSpace-complete [Tra06, Lemma 4].
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Computing the Pareto frontier
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Pareto frontier from v  minimal(Ensure(v)) = Pareto(v).

Ensurek(v) = {c 2 Nd | 9�� st. 8�⇤, Cost(h��,�⇤iv )C c^ |h��,�⇤iv |F  k}.

The algorithm computes, step by step, the sets Ik(v) for all v 2 V .

For all k 2 N and all v 2 V , Ik(v) = minimal(Ensurek(v))

There exists k⇤ 2 N such that for all v 2 V and for all ` 2 N, Ik
⇤
(v) = Ik

⇤+`(v).

For all v 2 V , Ik
⇤
(v) = Pareto(v).

Theorem

The fixpoint algorithm runs in time polynomial in W and |V | and is exponential
in d .
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Computing Pareto(v)

for v 2 F do I0(v) = {0}
for v 62 F do I0(v) = {1}

repeat
for v 2 V do

if v 2 F then Ik+1(v) = {0}

else if v 2 V� then

Ik+1(v) = minimal

0

@
[

v02succ(v)

" Ik(v 0) + w(v , v 0)

1

A

else if v 2 V⇤ then

Ik+1(v) = minimal

0

@
\

v02succ(v)

" Ik(v 0) + w(v , v 0)

1

A

until Ik+1(v) = Ik(v) for all v 2 V
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v0

v1 v2 v3

v4 v5

(4, 2)

(4, 2)

(2, 4)

(2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(1,1)} {(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(0, 0)} {(1,1)}

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(1,1)} {(1,1)}

{(1, 1)}{(1, 1)} {(1,1)}

{(0, 0)} {(1, 1)}

{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(5, 3), (3, 5)} {(1,1)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

(8, 8)

(10, 6)

(8, 8)

(6, 10)

(7, 5)

(5, 7)

{(1,1)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(6, 4), (4, 6)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

I0(·)

I1(·)I2(·)I3(·)I4(·)I5(·)
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v0

v1 v2 v3

v4 v5

(4, 2)

(4, 2)

(2, 4)

(2, 4)

v6 v7 v8

v9

(4, 2) (2, 4)
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{(1, 1)}{(1, 1)} {(2, 2)}
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(8, 8)

(10, 6)

(8, 8)

(6, 10)
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(5, 7)
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{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

I0(·)

I1(·)

I2(·)I3(·)I4(·)I5(·)
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v0

v1 v2 v3

v4 v5

(4, 2)(4, 2) (2, 4)(2, 4)

v6 v7 v8
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v0

v1 v2 v3

v4 v5

(4, 2)

(4, 2)

(2, 4)

(2, 4)

v6 v7 v8

v9
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{(1,1)}

{(1,1)}{(1,1)} {(1,1)}

{(5, 3), (3, 5)} {(1,1)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

(8, 8)

(10, 6)

(8, 8)

(6, 10)
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{(8, 8)}
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{(1, 1)}{(1, 1)} {(2, 2)}
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{(8, 8)}

{(6, 4), (4, 6)}{(6, 4), (4, 6)} {(4, 4)}

{(5, 3), (3, 5)} {(3, 3)}

{(1, 1)}{(1, 1)} {(2, 2)}

{(0, 0)} {(1, 1)}

I0(·)I1(·)I2(·)I3(·)I4(·)

I5(·)
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Pareto-optimal strategies

for v 2 F do I0(v) = {0}
for v 62 F do I0(v) = {1}

repeat
for v 2 V do

if v 2 F then Ik+1(v) = {0}

else if v 2 V� then

Ik+1(v) = minimal

0

@
[

v02succ(v)

" Ik(v 0) + w(v , v 0)

1

A

for x 2 Ik+1(v) do
if x 2 Ik(v) then f k+1

v (x) = f kv (x)
else

f k+1
v (x) = (v 0, x0) where v 0 and x0 are such that v 0 2
succ(v), x = x0 + w(v , v 0) and x0 2 Ik(v 0)

else if v 2 V⇤ then

Ik+1(v) = minimal

0

@
\

v02succ(v)

" Ik(v 0) + w(v , v 0)

1

A

until Ik+1(v) = Ik(v) for all v 2 V
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Computing Pareto-optimal strategies

Given u 2 V and c 2 I⇤(u)\{1}, we define a strategy �⇤
� from

u such that for all hv 2 Hist�(u), let C(hv) = {x0 2 I⇤(v) |
x0 C c� Cost(hv) ^ x0 L c� Cost(hv)},

�⇤
�(hv) =

(
v 0 for some v 0 2 succ(v), if C(hv) = ;
f ⇤v (x)[1] where x = minL C(hv), if C(hv) 6= ;

.

�⇤
� is a c-Pareto-optimal strategy from u.
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Memory Requirements
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v0

v1 v2 v3

v4 v5

(4, 2)(4, 2) (2, 4)

(2, 4)

v6 v7 v8

v9

(4, 2)

(4, 2)

(2, 4)(2, 4)

Is it possible to ensure (8, 8) from v0?  Yes.
(with memory!)

7�! (8, 8)

7�! (8, 8)

7�! (7, 5)

Player � can adapt his strategy in function of the
choice of Player ⇤  finite-memory strategy!
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b1 b2 b3 c1 c2 c3
(0, 20)

(20, 0)

(0, 21)

(21, 0)

(0, 22)

(22, 0)

(0, 20)

(20, 0)

(0, 21)

(21, 0)

(0, 22)

(22, 0)

Does there exist a strategy �� that ensures (23 � 1, 23 � 1)?

Intuitively:

Player ⇤ generates two numbers on 3 bits: x and x . Ex: #"#  (x , x) = (101, 010).
Player � has to generate two numbers on 3 bits: y and y such that

1 x + y  23 � 1
2 x + y  23 � 1

Ex: "#"  (y , y) = (010, 101) and so x + y = x + y = 23 � 1.

Since x = (23 � 1)� x , y should be equal to x to satisfy inequalities (1) and (2).

Player ⇤ may generate all numbers between 0 and 23 � 1 Player � has to answer
di↵erently with respect to the generated numbers  23 combinations to keep in
memory.

 This example may be generalized to n bits  we need strategies with exponential
memory.
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Conclusion
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Conclusion

Componentwise order Lexicographic order

minimal(Ensure(v)) in exponential time in polynomial time
CEP PSpace-complete in P

uniform approach to compute minimal(Ensure(v)) both for the componentwise
order and the lexicographic order  fixpoint algorithm;

(Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;

Pareto-optimal strategies may require memory.
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Multiplayer Reachability Games



Setting

v0

v8

v1v3 v2

v4

v5

v6

v7

For all vertices e, w(e) = 1.

An initial vertex: v0;

Two (or more) players;
Ex: Player � and Player ⇤.
Objectives:

Player � wants to reach F� = {v2, v6, v7}
(ASAP);
Player ⇤ wants to reach F⇤ = {v2} (ASAP).
 each player has his own target set.

/////////optimal////////////strategies (optimality)  equilibria
(stability).
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Nash equilibria
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Definition

v0

v8

v1v3 v2

v4

v5

v6

v7

X

Nash equilibrium

A strategy profile (��,�⇤) is a Nash equi-
librium (NE) if no player has an incentive
to deviate unilaterally.

Counter-ex: (��,�⇤):

(��,�⇤)  h��,�⇤iv0 = v0v1v3v4v5v!
6 ;

(Cost�(h��,�⇤iv0 ),Cost⇤(h��,�⇤iv0 )) =
(5,+1).

 not an NE.
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Di↵erent NEs may coexist

v0

v8

v1v3 v2

v4

v5

v6

v7

h��,�⇤iv0 = (v0v8)!

Cost : (+1,+1)

NO player visits his
target set ...

h��,�⇤iv0 =
(v0v1v2)!

Cost : (2, 2)

BOTH players visit
their target set !

v0

v8

v1v3 v2

v4

v5

v6

v7
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What is (for us) a relevant Nash equilibrium ?
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Studied problems

1 (Constrained existence problem)

Given (k1, . . . , kn) 2 (N [ {+1})n, does there
exist an NE (�1, . . . ,�n) such that, for all 1  i  n:

Costi (h�1, . . . ,�niv0)  ki .

2 (Social welfare decision problem)
3 (Pareto optimal decision problem)

For NEs, in multiplayer quantitative reachability games, Problem
1 is NP-complete.[BBGT19]

[BBGT19]: On relevant equilibria in reachability games, T. Brihaye, V. Bruyère, A. Goeminne and N.

Thomasset, RP’19.
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Studied problems

1 (Constrained existence problem) Given (k1, . . . , kn) 2 (N [ {+1})n, does there
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Key idea

Outcome characterization of a Nash equilibrium

Let ⇢ be a play,
there exists an NE (�1, . . . ,�n) such that h�1, . . . ,�niv0 = ⇢

if and only if
⇢ satisfies a “good” property.

 Does there exist a play ⇢ such that:

for each player i , Costi (⇢)  ki ;

⇢ satisfies a “good” property?
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Outcome characterization of Nash equilibria

v0

v8

v1v3 v2

v4

v5

v6

v7

What is this good property?

 being �-consistent.

�-consistent play

� : V ! N [ {+1}: a labeling
function;

⇢ = ⇢0⇢1 . . . ✏ � if and only if for all
for all player i and all k 2 N such that
i 62 Visit(⇢0 . . . ⇢k) and ⇢k 2 Vi :
Costi (⇢�k)  �(⇢k).
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Outcome characterization of Nash equilibria

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

+1

0 1

0

� : V ! N [ {+1};

v0v1v3v4v5v!
6 6✏ �:

Cost⇤(v0v1v3v4v5v!
6 ) = +1  +1 X

Cost�(v1v3v4v5v!
6 ) = 4 6 1 X

(v0v8)! ✏ �: Cost = (+1,+1);
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How to find the good � ?

Main idea: �(v): the maximal number of steps within which the player who owns this
vertex should reach his target set along ⇢, starting from v .
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NE outcome characterization [BBGT19]

A play ⇢ is the outcome of an NE
if and only if

⇢ is Val-consistent.

Val(v) =

(
Val�(v) if v 2 V�

Val⇤(v) if v 2 V⇤
.

Val

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

+1

0 1

0

Val�
MIN: �
MAX: ⇤

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

2

0 1

0

Val⇤
MIN: ⇤
MAX �

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

0+1+1

+1

+1 +1

+1

1
two player

(non zero-sum)
game

2
Two player
zero-sum
games
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v0 v1

2 F⇤ 2 F�

. . .

Val⇤(v0)
= 4

X

Val�(v1)
= 3

X

XXXXX . . .  outcome of an NE;

XXX  //////////outcome///of////an/////NE.

Aline Goeminne A stroll with reachability games 49



v0 v1

2 F⇤ 2 F�

. . .

Val⇤(v0)
= 4

X

Val�(v1)
= 3

X

XXXXX . . .  outcome of an NE;

XXX  //////////outcome///of////an/////NE.

Aline Goeminne A stroll with reachability games 49



v0 v1

2 F⇤ 2 F�

. . .

Val⇤(v0)
= 4

X

Val�(v1)
= 3

X

XXXXX . . .  outcome of an NE;

XXX  //////////outcome///of////an/////NE.

Aline Goeminne A stroll with reachability games 49



v0 v1

2 F⇤ 2 F�

. . .

Val⇤(v0)
= 4

X

Val�(v1)
= 3

X

XXXXX . . .  outcome of an NE;

XXX  //////////outcome///of////an/////NE.

Aline Goeminne A stroll with reachability games 49



Outcome characterization of Nash equilibria

v0

v8

v1v3 v2

v4

v5

v6

v7

+1

+1

013

+1

0 1

0

�// Val : V ! N [ {+1};

v0v1v3v4v5v!
6 6✏ Val:

Cost⇤(v0v1v3v4v5v!
6 ) = +1  +1 X

Cost�(v1v3v4v5v!
6 ) = 4 6 1 X

(v0v8)! ✏ Val: Cost = (+1,+1);
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Algorithm (For NE)

1 it guesses a lasso of polynomial length;

2 it verifies that the cost profile of this lasso satisfies the
conditions given by the problem;

3 it verifies that the lasso is the outcome of an NE.

NP-algorithm for Problem 1:

Step 1: if there exists an NE which satisfies the constraints, there exists one which
also satisfies the constraints and such that its outcome is a lasso (h`!) with a

polynomial length (|h`|).
Step 2: can be done in polynomial time.

Step 3: checking the Val-consistence along the lasso of polynomial length can be
done in polynomial time.
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Subgame perfect equilibria
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Definition of subgame perfect equilibrium

v0

v8

v1v3 v2

v4

v5

v6

v7

refined solution concept:
subgame perfect equilibrium.

Subgame perfect equilibrium

A strategy profile (��,�⇤) is a subgame
perfect equilibrium (SPE) if it is an NE from
each history.
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Definition of subgame perfect equilibrium

v0

v8

v1v3 v2

v4

v5

v6

v7

X

v0

v0v8 v0v1

v0v8v0 v0v1v2v0v1v3

v0v1v3v0 v0v1v3v4

v0v1v3v0v1v0v1v3v0v8 v0v1v3v4v7 v0v1v3v4v5

v0v1v3v4v5v6

. . . . . .

. . . . . . . . .

. . .

(��,�⇤) is an NE;

(��,�⇤) is not an SPE:
there is a profitable deviation from v0v1.
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(The same) Studied problems

1 (The constrained existence problem) Given (k1, . . . , kn) 2 (N [ {+1})n, does
there exist an ////NE SPE (�1, . . . ,�n) such that, for all 1  i  n:

Costi (h�1, . . . ,�niv0)  ki .

2 (Social welfare decision problem)
3 (Pareto optimal decision problem)

For /////NEs SPEs, in multiplayer quantitative reachability games,
Problem 1 is ///////////////NP-complete PSPACE-complete.[BBG+19]

[BBG+19]: The complexity of subgame perfect equilibria in quantitative reachability games, T. Brihaye, V.

Bruyère, A. Goeminne, J.-F. Raskin, and M. van den Bogaard, CONCUR’19.
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(The same) Key idea

SPE outcome characterization

A play ⇢ is the outcome of an SPE
if and only if

⇢ is �⇤-consistent.

v0

v8

v1v3 v2

v4

v5

v6

v7

v8, ; v0, ; v1, ;

v3, ; v4, ; v5, ;

v6, {�}v7, {�}

v2, {�,⇤}

v1, {�,⇤}

v3, {�,⇤}

v0, {�,⇤}v8, {�,⇤} v4, {�,⇤}

v7, {�,⇤}

v5, {�,⇤}

v6, {�,⇤}

 �⇤: the fixpoint of this algorithm:

Computation of �⇤

k  0
foreach (v , I ) 2 VX (with (v , I ) 2 Vi for some player i) do

if i 2 I then
�0(v , I ) = 0

else
�0(v , I ) = +1

end
end
repeat

k  k + 1
foreach (v , I ) 2 VX (with (v , I ) 2 Vi for some player i) do

if i 2 I then
�k (v , I ) = 0

else
�k+1(v , I ) = 1 + min

(v0,I 0)2Succ(v,I )
max{Costi (⇢) | ⇢ 2 ⇤k (v 0, I 0)}

end
end

until �k = �k�1

return �k .
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Conclusion
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Conclusion

characterization of the complexity of several decision problems related to the
existence of relevant equilibria: in quantitative and qualitative Reachability games:

Problem 1 : the constrained existence problem (CE);
Problem 2 : the social welfare decision problem (SW);
Problem 3 : the Pareto optimal decision problem (PO);

Comp.
Qual. Reach. Quant. Reach.

NE SPE NE SPE

CE NP-c [CFGR16] PSPACE-c [BBGR18] NP-c PSPACE-c [BBG+19]
SW NP-c PSPACE-c NP-c PSPACE-c
PO NP-h/⌃P

2 PSPACE-c NP-h/⌃P
2 PSPACE-c

Memory
Qual. Reach. Quant. Reach.

NE SPE NE SPE

CE Poly.[CFGR16] Expo. [BBGR18] Poly. Expo.
SW Poly. Expo. Poly. Expo.
PO Poly. Expo. Poly. Expo.

For more details: [BBGT19]: Thomas Brihaye, Véronique Bruyère, Aline Goeminne,
Nathan Thomasset, On relevant equilibria in reachability games, RP 2019; or [BBGT21].
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