Permissive Equilibria in Multiplayer Reachability Games

<u>Aline GOEMINNE¹</u> Benjamin MONMEGE².

F.R.S.-FNRS & UMONS – Université de Mons, Belgium.
 Aix-Marseille Univ, CNRS, LIS, Marseille, France.

Highlights'24

Multiplayer reachability games

- A graph G = (V, E)
- A set of *n* players *N*, Ex: Player \bigcirc and Player \square
- An initial vertex, Ex: v₀

Reachability objective

Given a target set $F_i \subseteq V$, for every play $\rho = \rho_0 \rho_1 \dots$,

$$\mathsf{Gain}_i(
ho) = egin{cases} 1 & \exists k \in \mathbb{N}, \
ho_k \in F_i \ 0 & ext{otherwise} \end{cases}$$

Ex:
$$F_{\bigcirc} = \{v_3, v_6, v_8, v_9\}$$
 and $F_{\square} = \{v_4, v_6\}$
• $Gain(v_0 v_5 v_7 v_8^{\omega}) = (Gain_{\bigcirc}(v_0 v_5 v_7 v_8^{\omega}), Gain_{\square}(v_0 v_5 v_7 v_8^{\omega})) = (1, 0)$

Simple strategies and Nash equilibria

- (Simple) strategy: $\sigma_i : V^* V_i \to V$ Ex: $(\sigma_{\bigcirc}, \sigma_{\square})$
- (Simple) strategy profile: $\sigma = (\sigma_1, ..., \sigma_n)$ $\rightsquigarrow \langle \sigma \rangle_{v_0}$ the outcome. Ex: $\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_5 v_7 v_8^{\omega}$.

Nash equilibrium

A simple strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

CEx:

- $(\sigma_{\bigcirc}, \sigma_{\square})$ is **not** an NE
- Gain $(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\nu_0}) = (1, 0)$
- σ_{\Box} is a profitable deviation

Gain_{$$\Box$$}($\langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{v_0}$) = Gain _{\Box} (($v_0 v_5 v_6$) ^{ω}) = 1

Ex:

• $(\sigma_{\bigcirc}, \sigma_{\square})$ is an NE.

What happens if the edge (v_0, v_5) becomes unavailable?

 \rightarrow choosing (v_0 , v_1) or (v_0 , v_2) is also winning for Player → strategies with multiple choices (multi-strategies)

- Multi-strategy: $\Theta_i : V^* V_i \to \mathcal{P}(V) \setminus \{\emptyset\}$ Ex: $(\Theta_{\bigcirc}, \Theta_{\Box})$
- Multi-strategy profile: $\Theta = (\Theta_1, ..., \Theta_n)$ $\rightsquigarrow \langle \Theta \rangle_{v_0}$ the set of outcomes Ex: $\langle \Theta_{\frown}, \Theta_{\Box} \rangle_{v_0} = \{v_0 v_1 v_4 v_3^{\heartsuit}, v_0 v_2 v_3^{\heartsuit}\}$

• \rightsquigarrow can be seen as a tree \mathcal{T}_{Θ} .

1. This notion of penalty is already used in the setting of two-player zero-games with reachability objectives in [BDMR09]:

Measuring permissivity in finite games, P. Bouyer, M. Duflot, N. Markey and G. Renault, CONCUR'09.

1. This notion of penalty is already used in the setting of two-player zero-games with reachability objectives in [BDMR09]:

Measuring permissivity in finite games, P. Bouyer, M. Duflot, N. Markey and G. Renault, CONCUR'09.

• a simple strategy σ_i is **consistent** with a multi-strategy Θ_i , written $\sigma_i \lesssim \Theta_i$, if for all $hv \in V^* V_i$:

$$\sigma_i(hv) \in \Theta_i(hv).$$

Permissive Nash equilibrium

A multi-strategy profile $\Theta = (\Theta_1, \ldots, \Theta_n)$ is a **permissive NE** if for all $\sigma = (\sigma_1, \ldots, \sigma_n)$ such that, for all $1 \le i \le n$, $\sigma_i \le \Theta_i$, σ is an NE.

Ex: $(\Theta_{\bigcirc}, \Theta_{\square})$ is a permissive NE.

Studied problems

Constrained penalty problem

Given a reachability game, an initial vertex v_0 and upper-bounds $(p_1, \ldots, p_n) \in (\mathbb{N} \cup \{+\infty\})^n$, does there exist a multi-strategy Θ such that

- Penalty_i $(\Theta, v_0) \leq p_i$ for all $1 \leq i \leq n$.
- \blacksquare Θ is a permissive NE;

The constrained penalty problem can be solved in PSPACE (if the upper-bound penalties are encoded in unary).

 \rightsquigarrow based on a characterization of outcomes of permissive NEs.

Conclusion

- **Permissiveness of equilibria**: **Nash equilibria** and subgame perfect equilibria; → based on the notion of penalties.
- Decision problems: constrained penalty problem, weakly winning with constrained penalty problem and strongly winning with constrained penalty problem ~> in PSPACE (if the upper-bound penalties are encoded in unary)
- Characterization of outcomes of equilibria: permissive Nash equilibria and permissive subgame perfect equilibria;
 - \rightsquigarrow trees have to satisfy some "good" properties.

Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault.

Measuring permissivity in finite games.

In Mario Bravetti and Gianluigi Zavattaro, editors, <u>CONCUR 2009</u>, volume 5710 of LNCS, pages 196–210. Springer, 2009.