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Multiplayer reachability games
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A graph G = (V ,E)

A set of n players N, Ex: Player � and Player ⇤
An initial vertex, Ex: v0

Reachability objective

Given a target set Fi ✓ V , for every play ⇢ =
⇢0⇢1 . . .,

Gaini (⇢) =

(
1 9k 2 N, ⇢k 2 Fi

0 otherwise

Ex: F� = {v3, v6, v8, v9} and F⇤ = {v4, v6}
Gain(v0v5v7v!

8 ) =
(Gain�(v0v5v7v!

8 ),Gain⇤(v0v5v7v
!
8 )) = (1, 0)

Aline Goeminne Permissive Equilibria in Multiplayer Reachability Games 2



Simple strategies and Nash equilibria
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(Simple) strategy: �i : V
⇤Vi ! V

Ex: (��,�⇤)

(Simple) strategy profile: � = (�1, . . . ,�n)
 h�iv0 the outcome.
Ex: h��,�⇤iv0 = v0v5v7v!

8 .

Nash equilibrium

A simple strategy profile � is a Nash equilibrium
(NE) if no player has an incentive to deviate uni-
laterally.

CEx:

(��,�⇤) is not an NE

Gain(h��,�⇤iv0) = (1, 0)

�⇤ is a profitable deviation

Gain⇤(h��,�⇤iv0) = Gain⇤((v0v5v6)
!) = 1

Ex:

(��,�⇤) is an NE.
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X
What happens if the edge (v0, v5) becomes unavail-
able?

 choosing (v0, v1) or (v0, v2) is also winning for Player �
 strategies with multiple choices (multi-strategies)
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Multi-strategies and permissive NEs
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Multi-strategy: ⇥i : V
⇤Vi ! P(V ) \ {;}

Ex: (⇥�,⇥⇤)

Multi-strategy profile: ⇥ = (⇥1, . . . ,⇥n)
 h⇥iv0 the set of outcomes
Ex: h⇥�,⇥⇤iv0 = {v0v1v4v!

3 , v0v2v
!
3 }
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 can be seen as a tree T ⇥.
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Multi-strategies and permissive NEs
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How to compare two multi-strategies?

 notion of penalty1.
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Penalties: (6, 0)
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Penalties: (1, 2)

1. This notion of penalty is already used in the setting of two-player zero-games with reachability objectives in [BDMR09]:

Measuring permissivity in finite games, P. Bouyer, M. Duflot, N. Markey and G. Renault, CONCUR’09.
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Multi-strategies and permissive NEs
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a simple strategy �i is consistent with a
multi-strategy ⇥i , written �i . ⇥i ,
if for all hv 2 V ⇤Vi :

�i (hv) 2 ⇥i (hv).

Permissive Nash equilibrium

A multi-strategy profile ⇥ = (⇥1, . . . ,⇥n) is a
permissive NE if for all � = (�1, . . . ,�n) such
that, for all 1  i  n, �i . ⇥i , � is an NE.

Ex: (⇥�,⇥⇤) is a permissive NE.
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Studied problems

Constrained penalty problem

Given a reachability game, an initial vertex v0 and upper-bounds
(p1, . . . , pn) 2 (N[{+1})n,
does there exist a multi-strategy ⇥ such that

Penaltyi (⇥, v0)  pi for all 1  i  n.

⇥ is a permissive NE;

The constrained penalty problem can be solved in PSPACE
(if the upper-bound penalties are encoded in unary).

 based on a characterization of outcomes of permissive NEs.
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Conclusion

Permissiveness of equilibria: Nash equilibria and subgame perfect equilibria;
 based on the notion of penalties.

Decision problems: constrained penalty problem, weakly winning with constrained
penalty problem and strongly winning with constrained penalty problem
 in PSPACE (if the upper-bound penalties are encoded in unary)

Characterization of outcomes of equilibria: permissive Nash equilibria and
permissive subgame perfect equilibria;
 trees have to satisfy some “good” properties.
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