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Reachability Games
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Is it possible to reach with cost  c?

Is it possible to reach

whatever the behavior of

the environment with
cost  c?

Is it possible to reach

with cost  (c1, c2)?

Is it possible to reach whatever the behavior of the

environment with cost  (c1, c2)?
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Two-Player Multi-Weighted Reachability Games

v0

v1 v2 v3

v4

(4, 2) (2, 4)

v5 v6 v7

(4, 2) (2, 4) (6, 6)

A d-weighted graph G = (V ,E , (wi )1id)

Two players: Player � and Player ⇤;
Turn-based;

Quantitative reachability objective

Given a target set F ✓ V , for all plays (infinite
paths in G) ⇢ = ⇢0⇢1 . . .:

Costi (⇢) =

8
>>>><

>>>>:

k�1X

n=0

wi (⇢n, ⇢n+1) if k is the least

index st.⇢k 2 F

+1 otherwise

Rem: same target set for all dimensions.

Ex:

Cost(v0v!
3 ) = (Cost1(v0v!

3 ),Cost2(v0v
!
3 )) =

(+1,+1)

Cost(v0v1v4v5( )
!
) = (10, 6)
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Two-Player Multi-Weighted Reachability Games

v0

v1 v2 v3

v4

(4, 2) (2, 4)

v5 v6 v7

(4, 2) (2, 4) (6, 6)

A strategy for Player �: �� : V ⇤V� �! V .

Given a strategy profile (��,�⇤) and an initial

vertex v0  only one consistent play h��,�⇤iv0
called the outcome.
Ex: h��,�⇤iv0 = v0v1v4v5( )

!
.
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Two-Player Multi-Weighted Reachability Games

v0

v1 v2 v3

v4

(4, 2) (2, 4)

v5 v6 v7
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Player � can ensure a cost profile c =

(c1, . . . , cd) from v if there exists a strat-

egy �� such that for all strategies �⇤ of

Player ⇤:

Cost(h��,�⇤iv )C c = (c1, . . . , cd)

Ex:

(8, 8)  Yes. (with memory!)

7�! (8, 8)

7�! (8, 8)

7�! (7, 5)

Player � can adapt his strategy in function of the

choice of Player ⇤  finite-memory strategy!
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Ensure(v) = {c 2 Nd | 9�� st. 8�⇤, Cost(h��,�⇤iv )C c}.

minimal(Ensure(v)) = Pareto(v)  Pareto frontier from v .

For c = (c1, . . . , cd) 2 Pareto(v), a strategy �� is c-Pareto-optimal if �� ensures

c from v .

Aline Goeminne Multi-Weighted Reachability Games 8



Studied problems



Studied problems

1 Compute the Pareto frontier and Pareto-optimal strategies.

2 Decide the constrained existence problem.

Constrained existence problem (CEP)

Given a game, a vertex v 2 V and c 2 Nd
,

does there exist a strategy �� of Player � such that for all strategies of

Player ⇤, we have:

Cost(h��,�⇤iv )C c
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Computing Pareto(v)

Ensure
k
(v) = {c 2 Nd | 9�� st. 8�⇤,

Cost(h��,�⇤iv )C c^ |h��,�⇤iv |F  k}.

The algorithm computes, step by step, the sets I
k
(v) for all v 2 V .

For all k 2 N and all v 2 V , I
k
(v) = minimal(Ensure

k
(v))

There exists k⇤ 2 N such that for all v 2 V and for all ` 2 N,
I
k⇤
(v) = I

k⇤+`
(v).

For all v 2 V , I
k⇤
(v) = Pareto(v).

Theorem

The fixpoint algorithm runs in time polynomial in W and |V | and
is exponential in d .
Where W is the maximal weight on an edge.
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Computing Pareto(v) and Pareto-optimal strategies

for v 2 F do I
0
(v) = {0}

for v 62 F do I
0
(v) = {1}

repeat
for v 2 V do

if v 2 F then I
k+1

(v) = {0}

else if v 2 V� then

I
k+1

(v) = minimal

0

@
[

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

else if v 2 V⇤ then

I
k+1

(v) = minimal

0

@
\

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

until Ik+1
(v) = I

k
(v) for all v 2 V
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Pareto-optimal strategies

for v 2 F do I
0
(v) = {0}

for v 62 F do I
0
(v) = {1}

repeat
for v 2 V do

if v 2 F then I
k+1

(v) = {0}

else if v 2 V� then

I
k+1

(v) = minimal

0

@
[

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

for x 2 I
k+1

(v) do
if x 2 I

k
(v) then f k+1

v (x) = f kv (x)
else

f k+1

v (x) = (v 0, x0) where v 0
and x0 are such that v 0 2

succ(v), x = x0 + w(v , v 0
) and x0 2 I

k
(v 0

)

else if v 2 V⇤ then

I
k+1

(v) = minimal

0

@
\

v02succ(v)

" I
k
(v 0

) + w(v , v 0
)

1

A

until Ik+1
(v) = I

k
(v) for all v 2 V
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Computing Pareto-optimal strategies

Given u 2 V and c 2 I
⇤
(u)\{1}, we define a strategy �⇤

� from

u such that for all hv 2 Hist�(u), let C(hv) = {x0 2 I
⇤
(v) |

x0 C c� Cost(hv) ^ x0 L c� Cost(hv)},

�⇤
�(hv) =

(
v 0

for some v 0 2 succ(v), if C(hv) = ;
f ⇤v (x)[1] where x = minL

C(hv), if C(hv) 6= ;
.

�⇤
� is a c-Pareto-optimal strategy from u.
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Conclusion

Componentwise order Lexicographic order

minimal(Ensure(v)) in exponential time in polynomial time

CEP PSpace-complete in P

uniform approach to compute minimal(Ensure(v)) both for the componentwise

order and the lexicographic order  fixpoint algorithm;

(Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;

Pareto-optimal strategies may require memory.
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