Multi-Weighted Reachability Games

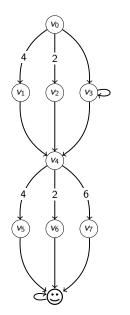
Thomas $BRIHAYE^1$ and <u>Aline GOEMINNE</u>²

UMONS – Université de Mons, Belgium.
F.R.S.-FNRS & UMONS – Université de Mons, Belgium.

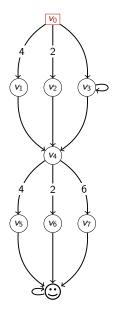
Highlights'23

2 Studied problems

3 Conclusion

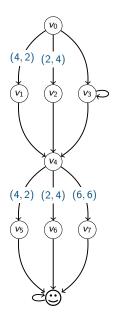


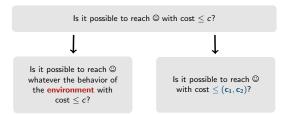
Is it possible to reach \bigcirc with cost $\leq c$?

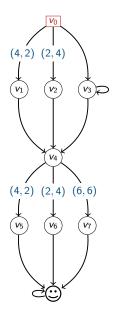


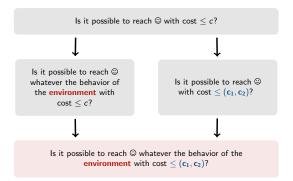
Is it possible to reach \bigcirc with cost $\leq c$?

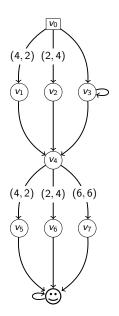
Is it possible to reach owhatever the behavior of the **environment** with $\text{cost} \leq c$?











- A *d*-weighted graph $G = (V, E, (w_i)_{1 \le i \le d})$
- Two players: Player () and Player ();
- Turn-based;

Quantitative reachability objective

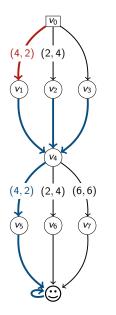
Given a target set $F \subseteq V$, for all **plays** (infinite paths in *G*) $\rho = \rho_0 \rho_1 \dots$:

$$\mathsf{Cost}_i(\rho) = \begin{cases} \sum_{n=0}^{k-1} w_i(\rho_n, \rho_{n+1}) & \text{if } k \text{ is the least} \\ & \text{index st.} \rho_k \in \mathsf{F} \\ +\infty & \text{otherwise} \end{cases}$$

<u>Rem:</u> same target set for all dimensions. <u>Ex:</u>

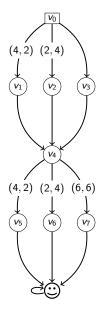
• $\operatorname{Cost}(v_0v_3^{\omega}) = (\operatorname{Cost}_1(v_0v_3^{\omega}), \operatorname{Cost}_2(v_0v_3^{\omega})) = (+\infty, +\infty)$

•
$$Cost(v_0v_1v_4v_5(\textcircled{o})^{\omega}) = (10,6)$$



- A strategy for Player \bigcirc : $\sigma_{\bigcirc}: V^*V_{\bigcirc} \longrightarrow V$.
- Given a strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ and an initial vertex $v_0 \rightsquigarrow$ only one consistent play $\langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{v_0}$ called the **outcome**.

 $\underline{\mathsf{Ex:}} \ \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = v_0 v_1 v_4 v_5 (\textcircled{\textcircled{o}})^{\omega}.$

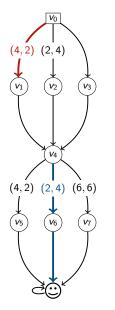


Player \bigcirc can **ensure** a cost profile **c** = (c_1, \ldots, c_d) from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathsf{c} = (c_1, \ldots, c_d)$$

<u>Ex</u>:

• $(8,8) \rightsquigarrow$ Yes. (with memory!)



Player \bigcirc can **ensure** a cost profile **c** = (c_1, \ldots, c_d) from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

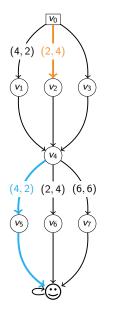
$$\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathsf{c} = (c_1, \ldots, c_d)$$

<u>Ex</u>:

• $(8,8) \rightsquigarrow$ Yes. (with memory!)

 $\longmapsto \qquad (8,8)$

Player \bigcirc can adapt his strategy in function of the choice of Player $\square \rightsquigarrow$ finite-memory strategy!



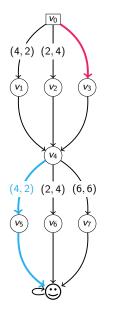
Player \bigcirc can **ensure** a cost profile **c** = (c_1, \ldots, c_d) from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathsf{c} = (c_1, \ldots, c_d)$$

<u>Ex</u>:

• $(8,8) \rightsquigarrow$ Yes. (with memory!)

Player \bigcirc can adapt his strategy in function of the choice of Player $\square \rightsquigarrow$ finite-memory strategy!

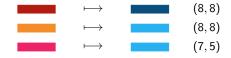


Player \bigcirc can **ensure** a cost profile **c** = (c_1, \ldots, c_d) from v if there exists a strategy σ_{\bigcirc} such that for all strategies σ_{\square} of Player \square :

$$\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathsf{c} = (c_1, \ldots, c_d)$$

<u>Ex</u>:

• $(8,8) \rightsquigarrow$ Yes. (with memory!)



Player \bigcirc can adapt his strategy in function of the choice of Player $\square \rightsquigarrow$ finite-memory strategy!

 $\mathsf{Ensure}(\mathbf{v}) = \{ \mathbf{c} \in \overline{\mathbb{N}}^d \mid \exists \sigma_{\bigcirc} \text{ st. } \forall \sigma_{\Box}, \mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{\mathbf{v}}) \leq_{\mathsf{C}} \mathbf{c} \}.$

minimal(Ensure(v)) = Pareto(v) \rightsquigarrow **Pareto frontier** from v.

For $\mathbf{c} = (c_1, \dots, c_d) \in \text{Pareto}(v)$, a strategy σ_{\bigcirc} is **c**-Pareto-optimal if σ_{\bigcirc} ensures **c** from *v*.

Studied problems

Studied problems

Compute the Pareto frontier and Pareto-optimal strategies.
Decide the constrained existence problem.

Constrained existence problem (CEP)

Given a game, a vertex $v \in V$ and $\mathbf{c} \in \mathbb{N}^d$, does there exist a strategy σ_{\bigcirc} of Player \bigcirc such that for all strategies of Player \Box , we have:

 $\mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathsf{v}}) \leq_{\mathsf{C}} \mathbf{c}$

$$\begin{split} \mathsf{Ensure}^{k}(\mathbf{v}) &= \{ \mathbf{c} \in \overline{\mathbb{N}}^{d} \mid \exists \sigma_{\bigcirc} \text{ st. } \forall \sigma_{\square}, \\ \mathsf{Cost}(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathbf{v}}) \leq_{\mathsf{C}} \mathbf{c} \wedge | \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\mathbf{v}} |_{\mathsf{F}} \leq k \}. \end{split}$$

The algorithm computes, step by step, the sets $I^{k}(v)$ for all $v \in V$.

For all $k \in \mathbb{N}$ and all $v \in V$, $I^k(v) = minimal(Ensure^k(v))$

There exists $k^* \in \mathbb{N}$ such that for all $v \in V$ and for all $\ell \in \mathbb{N}$, $I^{k^*}(v) = I^{k^*+\ell}(v)$.

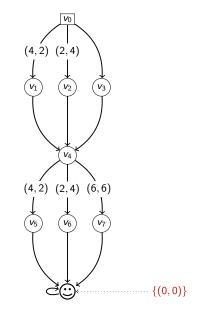
For all
$$v \in V$$
, $I^{k^*}(v) = Pareto(v)$.

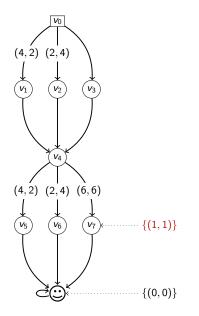
Theorem

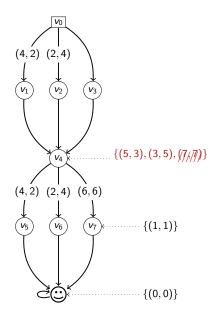
The fixpoint algorithm runs in time polynomial in W and |V| and is **exponential** in d. Where W is the maximal weight on an edge.

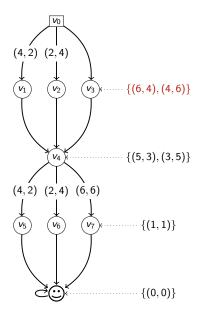
Computing Pareto(v) and Pareto-optimal strategies

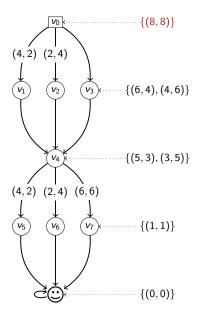
for $v \in F$ do $I^{0}(v) = \{0\}$ for $v \notin F$ do $I^0(v) = \{\infty\}$ repeat for $v \in V$ do if $v \in F$ then $I^{k+1}(v) = \{\mathbf{0}\}$ else if $v \in V_{\bigcirc}$ then $I^{k+1}(v) = \text{minimal}\left(\bigcup_{v' \in \text{super(v)}} \uparrow I^{k}(v') + \mathbf{w}(v, v')\right)$ else if $v \in V_{\Box}$ then $I^{k+1}(v) = \min\left(\bigcap_{v \in Cons(v)} \uparrow I^{k}(v') + \mathbf{w}(v, v')\right)$ until $I^{k+1}(v) = I^k(v)$ for all $v \in V$











Pareto-optimal strategies

for $v \in F$ do $I^{0}(v) = \{0\}$ for $v \notin F$ do $I^0(v) = \{\infty\}$ repeat for $v \in V$ do if $v \in \mathsf{F}$ then $\mathsf{I}^{k+1}(v) = \{\mathbf{0}\}$ else if $v \in V_{\bigcirc}$ then $\mathsf{I}^{k+1}(v) = \mathsf{minimal}\left(\bigcup_{v' \in \mathsf{super}(v)} \uparrow \mathsf{I}^{k}(v') + \mathbf{w}(v, v')\right)$ for $\mathbf{x} \in \mathbf{I}^{k+1}(\mathbf{v})$ do $\overrightarrow{\mathbf{if} \mathbf{x} \in I^k(v)}$ then $f_v^{k+1}(\mathbf{x}) = f_v^k(\mathbf{x})$ else $f_{v}^{k+1}(\mathbf{x}) = (v', \mathbf{x}') \text{ where } v' \text{ and } \mathbf{x}' \text{ are such that } v' \in \operatorname{succ}(v), \mathbf{x} = \mathbf{x}' + \mathbf{w}(v, v') \text{ and } \mathbf{x}' \in I^{k}(v')$ else if $v \in V_{\Box}$ then $I^{k+1}(v) = \min\left(\bigcap_{v' \in \mathsf{surr}(v)} \uparrow I^k(v') + \mathbf{w}(v, v')\right)$ until $I^{k+1}(v) = I^k(v)$ for all $v \in V$

Computing Pareto-optimal strategies

Given $u \in V$ and $\mathbf{c} \in I^*(u) \setminus \{\infty\}$, we define a strategy σ_{\bigcirc}^* from u such that for all $hv \in \text{Hist}_{\bigcirc}(u)$, let $\mathcal{C}(hv) = \{\mathbf{x}' \in I^*(v) \mid \mathbf{x}' \leq_{\mathsf{C}} \mathbf{c} - \text{Cost}(hv) \land \mathbf{x}' \leq_{\mathsf{L}} \mathbf{c} - \text{Cost}(hv)\}$,

$$\sigma^*_{\bigcirc}(hv) = \begin{cases} v' & \text{for some } v' \in \text{succ}(v), \text{ if } \mathcal{C}(hv) = \emptyset \\ f^*_v(\mathbf{x})[1] & \text{where } \mathbf{x} = \min_{\leq_{\mathrm{L}}} \mathcal{C}(hv), \text{ if } \mathcal{C}(hv) \neq \emptyset \end{cases}$$

 σ^*_{\bigcirc} is a **c**-Pareto-optimal strategy from *u*.

Conclusion

	Componentwise order	Lexicographic order
$\min(Ensure(v))$	in exponential time	in polynomial time
CEP	PSPACE-complete	in P

- uniform approach to compute minimal(Ensure(v)) both for the componentwise order and the lexicographic order ~→ fixpoint algorithm;
- (Pareto)-optimal strategies can be synthesized thanks to the fixpoint algorithm;
- Pareto-optimal strategies may require memory.