Non-Blind Strategies in Timed Network Congestion Games

Aline Goeminne Nicolas Markey Ocan Sankur

Univ Rennes, Inria, CNRS, IRISA, Rennes, France

FORMATS'22

- Games in which players share resources: e.g., edges or locations in a network. → leads to congestion.
- Network or timed network.
- Different kinds of strategies: (timed) paths vs non-blind strategies.
- Study of Nash equilibria and their efficiency (Social welfare, Price of Anarchy and Price of Stability).

1 Preliminaries

- Timed network congestion game
- Semantics as an infinite concurrent game
- Nash equilibrium

2 Studied problems

3 Constrained existence of NEs

4 Conclusion

Preliminaries

Timed network congestion game

A timed network \mathcal{A} : a timed automaton

- a set of vertices (locations) V;
- a set of edges (transitions) *E*;
- one clock which is never reset;
- for all $e \in E$, a **guard** g_e : either True or a time interval;
 - <u>ex:</u> $g_{s_0,s_4} = [2,3].$

Timed Network Congestion Game (TNCG) ${\cal N}$

- n players (encoded in binary), N = {1,...,n};
 ex: Player 1 and Player 2;
- a timed network *A*;
- for all $\mathbf{v} \in \mathbf{V}$, a non-decreasing function $L_{\mathbf{v}} : N \to \mathbb{N}_0$; ex: $L_{s_3} : x \mapsto 10x + 6$.

• for all players $i \in N$, a source vertex src_i and a target vertex tgt_i; ex: src₁ = src₂ = s₀ and tgt₁ = tgt₂ = s₆.

- a configuration $Config = (s_1, \ldots, s_n) \in V^n$ provides the position of each player;
- a timed configuration $(d, \text{Config}) \in \mathbb{N} \times V^n$ provides the position of each player at a given time d.

How to play in this game?

current timed config.	choice of the players	legal actions
$(0, (s_0, s_0))$		(1) absolute time in $\mathbb{N}_{>0}$ (2) a successor (1)-(2) satisfy the guards

• Play: (0, (s₀, s₀))

current timed config.	choice of the players	legal actions
(0, (s ₀ , s ₀))	$ \begin{bmatrix} (2, s_1) \\ (3, s_4) \end{bmatrix} $	(1) absolute time in $\mathbb{N}_{>0}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) = \frac{[(2, s_1)]}{(3, s_4)}$

current timed config.	choice of the players	legal actions
$(2, (s_1, s_0))$		(1) absolute time in $\mathbb{N}_{>2}$ (2) a successor (1)-(2) satisfy the guards

• Play:
$$(0, (s_0, s_0)) \xrightarrow{ \begin{bmatrix} (2, s_1) \\ (3, s_4) \end{bmatrix}} (2, (s_1, s_0))$$

current timed config.	choice of the players	legal actions
$(2, (s_1, s_0))$	$ \begin{bmatrix} (4, s_2) \\ (3, s_4) \end{bmatrix} $	(1) absolute time in $\mathbb{N}_{>2}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) \xrightarrow{\left[\begin{pmatrix} 2, s_1 \\ (3, s_4) \end{bmatrix}}{(2, (s_1, s_0))} \xrightarrow{\left[\begin{pmatrix} 4, s_2 \\ (3, s_4) \end{bmatrix}}{(2, (s_1, s_0))} \xrightarrow{\left[\begin{pmatrix} 4, s_2 \\ (3, s_4) \end{bmatrix}}{(2, s_1)}$

current timed config.	choice of the players	legal actions
(3, (<i>s</i> ₁ , <i>s</i> ₄))		(1) absolute time in $\mathbb{N}_{>3}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) \xrightarrow{ \begin{bmatrix} (2, s_1] \\ (3, s_4) \end{bmatrix}} (2, (s_1, s_0)) \xrightarrow{ \begin{bmatrix} (4, s_2) \\ (3, s_4) \end{bmatrix}} (3, (s_1, s_4))$

current timed config.	choice of the players	legal actions
(3, (<i>s</i> ₁ , <i>s</i> ₄))	$ \begin{bmatrix} (4, s_2) \\ (4, s_5) \end{bmatrix} $	(1) absolute time in $\mathbb{N}_{>3}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) \xrightarrow{[(2, s_1)]} (2, (s_1, s_0)) \xrightarrow{[(4, s_2)]} (3, (s_1, s_4))} (3, (s_1, s_4)) \xrightarrow{[(4, s_2)]} (4, s_5)$

current timed config.	choice of the players	legal actions
(4, (<i>s</i> ₂ , <i>s</i> ₅))		(1) absolute time in $\mathbb{N}_{>4}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) \xrightarrow{[(2, s_1)]} (2, (s_1, s_0)) \xrightarrow{[(4, s_2)]} (3, (s_1, s_4)) \rightarrow (3, (s_1, s_4)) \xrightarrow{[(4, s_2)]} (4, (s_2, s_5)) \rightarrow (4, (s_2, s_5))$

current timed config.	choice of the players	legal actions
(4, (<i>s</i> ₂ , <i>s</i> ₅))	$ \begin{bmatrix} (5, s_6) \\ (5, s_6) \end{bmatrix} $	(1) absolute time in $\mathbb{N}_{>4}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) \xrightarrow{[(2, s_1)]} (2, (s_1, s_0)) \xrightarrow{[(4, s_2)]} (3, (s_1, s_4)) \xrightarrow{[(4, s_2)]} (4, (s_2, s_5)) \xrightarrow{[(5, s_6)]} (5, s_6) \xrightarrow{[(5, s_6)]} (5, s_6$

current timed config.	choice of the players	legal actions
(5, (s ₆ , s ₆))		(1) absolute time in $\mathbb{N}_{>5}$ (2) a successor (1)-(2) satisfy the guards

• Play: $(0, (s_0, s_0)) \xrightarrow{[(2, s_1]]} (2, (s_1, s_0)) \xrightarrow{[(4, s_2)]} (3, (s_1, s_4))} (3, (s_1, s_4)) \xrightarrow{[(4, s_2)]} (4, (s_2, s_5)) \xrightarrow{[(5, s_6)]} (5, (s_6, s_6)) \dots$

current timed config.	choice of the players	legal actions
(5, (s ₆ , s ₆))		(1) absolute time in $\mathbb{N}_{>5}$ (2) a successor (1)-(2) satisfy the guards

• Play: $_{(0, (s_0, s_0))} \underbrace{ \begin{bmatrix} (2, s_1] \\ (3, s_4] \end{bmatrix} }_{(2, (s_1, s_0))} \underbrace{ \begin{bmatrix} (4, s_2) \\ (3, s_4) \end{bmatrix} }_{(3, (s_1, s_4))} \underbrace{ \begin{bmatrix} (4, s_2) \\ (4, s_5) \end{bmatrix} }_{(4, (s_2, s_5))} \underbrace{ \begin{bmatrix} (5, s_6) \\ (5, s_6) \end{bmatrix} }_{(5, (s_6, s_6)) \dots}$ • Cost : (20, 20) + (1, 5) = (1, 1) + (3, 3) = (25, 29).

Semantics as an infinite concurrent game

Infinite concurrent game \mathcal{G}

- n players;
- the set of timed configurations $TC \subseteq \mathbb{N} \times V^n$;
- the set of actions $Act = \mathbb{N}_0 \times V$;
- for all $i \in N$, $Mov_i : TC \rightarrow \mathcal{P}(Act)$ maps all timed config. to the set of legal actions $\underline{ex:} Mov_1(2, (s_0, s_4)) =$ $\overline{\{(3, s_1), (3, s_4), (4, s_2), (4, s_5), (k, s_0) \mid k \ge 3\}}$
- an update function Up : TC × Actⁿ → TC: <u>ex:</u>

$$\begin{split} & \left((0, (\mathsf{s}_0, \mathsf{s}_0)), \begin{bmatrix} (2, \mathfrak{s}_1) \\ (3, \mathfrak{s}_3) \end{bmatrix} \right) \mapsto (2, (\mathfrak{s}_1, \mathfrak{s}_0)) \\ & \left((0, (\mathsf{s}_0, \mathfrak{s}_0)), \begin{bmatrix} (3, \mathfrak{s}_1) \\ (3, \mathfrak{s}_3) \end{bmatrix} \right) \mapsto (3, (\mathfrak{s}_1, \mathfrak{s}_3)) \end{split}$$

Semantics as an infinite concurrent game

Infinite concurrent game \mathcal{G}

- for all $i \in N$, a weight function $w_i : \mathsf{TC} \times \mathsf{TC} \to \mathbb{N}_0$ <u>ex:</u>
 - $$\begin{split} &w_1, w_2: ((0, (s_0, s_0)), (2, (s_1, s_0)) \mapsto 20 \\ &w_1: ((2, (s_1, s_0)), (3, (s_1, s_4)) \mapsto 1 \\ &w_2: ((2, (s_1, s_0)), (3, (s_1, s_4)) \mapsto 5 \end{split}$$
- for all $i \in N$, a target set Goal_i = {(d, Config) \in TC | Config(i) = tgt_i} <u>ex:</u> (5, (s₆, s₆)) \in Goal₁.
- an initial timed configuration c₀;
 <u>ex:</u> c₀ : (0, (s₀, s₀))

The set of transitions T

$$\{(c_1, m, c_2) \in \mathsf{TC} \times \mathsf{Act}^n \times \mathsf{TC} \mid \\ \forall i \in N, \ m_i \in \mathsf{Mov}_i(c_1) \land \mathsf{Up}(c_1, m) = c_2\}$$

Costs and strategies

• Computation of cost: for each infinite path (called a play) ρ in (\mathcal{G}, c_0) , $\rho = \rho_0 \rho_1 \dots$:

$$\mathsf{Cost}_i(
ho) = egin{cases} \sum_{k=0}^{\ell-1} w_i(
ho_k,
ho_{k+1}) & ext{if } \ell ext{ is the least ind} \ & ext{st. }
ho_\ell \in \mathsf{Goal}_i \ & +\infty & ext{otherwise} \end{cases}$$

- Strategies: for $i \in N$, $\sigma_i : \text{Hist}_{\mathcal{G}}(c_0) \longrightarrow \mathbb{N}_0 \times V$;
- A strategy profile: $\sigma = (\sigma_i)_{i \in N}$;
- **The outcome** of σ from c_0 : $\langle \sigma \rangle_{c_0}$;
- The cost profile of a play ρ : $Cost(\rho) = (Cost_i(\rho))_{i \in N};$
- The social welfare of a play ρ : SW(ρ) = $\sum \text{Cost}_i(\rho)$.

Examples

Player 1 follows the timed path $(0, s_0)(2, s_1)(4, s_2)(5 + k, s_6)_{k \ge 0}$; Player 2 follows the timed path $(0, s_0)(3, s_4)(4, s_5)(5 + k, s_6)_{k \ge 0}$.

$$\begin{array}{l} \bullet \quad \langle \sigma_1, \sigma_2 \rangle_{c_0} = (0, (s_0, s_0)) \xrightarrow{\begin{bmatrix} (2, s_1) \\ (3, s_4) \end{bmatrix}} (2, (s_1, s_0)) \xrightarrow{\begin{bmatrix} (4, s_2) \\ (3, s_4) \end{bmatrix}} (3, (s_1, s_4)) \xrightarrow{\begin{bmatrix} (4, s_2) \\ (4, s_5) \end{bmatrix}} \\ \left(\xrightarrow{\begin{bmatrix} (5+k, s_6) \\ (5+k, s_6) \end{bmatrix}} (5+k, (s_6, s_6)) \right)_{\substack{k \ge 0 \\ k \ge 0}} \\ \bullet \quad \operatorname{Cost}(\langle \sigma_1, \sigma_2 \rangle_{c_0}) = (25, 29) \rightsquigarrow \operatorname{SW}(\langle \sigma_1, \sigma_2 \rangle_{c_0}) = 54. \end{array}$$

Examples

Player 1 follows the timed path $(0, s_0)(2, s_1)(4, s_2)(5 + k, s_6)_{k \ge 0}$; Player 2 follows the timed path $(0, s_0)(3, s_4)(4, s_5)(5 + k, s_6)_{k > 0}$.

Those strategies are **blind strategies**: the players follow their timed path whatever the behavior of the other players.

Examples

More involved strategies may be expressed

Player 1 follows the timed path $(0, s_0)(1, s_3)(2 + k, s_6)_{k \ge 0}$; Player 2:

- waits one time unit in s₀;
- observes if Player 1 has complied with his strategy, i.e. Player 1 is in s₃;
- yes: Player 2 follows (2, s₄)(4, s₅)(5, s₆);
- no: Player 2 follows (4, s₂)(5, s₆) if Player 1 chosed the left side; (4, s₅)(5, s₆) if Player 1 chosed the right side.

Nash equilibrium

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

Counter-example:

■ Player 1 follows the timed path $\rho_1 = (0, s_0)(2, s_1)(4, s_2)(5 + k, s_6)_{k \ge 0};$ Player 2 follows the timed path $\rho_2 = (0, s_0)(3, s_4)(4, s_5)(5 + k, s_6)_{k \ge 0}.$

•
$$Cost(\langle \sigma_1, \sigma_2 \rangle_{c_0}) = (25, 29).$$

Player 2 has an incentive to deviate and follows $\rho'_2 = (0, s_0)(2, s_4)(4, s_5)(5 + k, s_6)_{k \ge 0}$

 $\begin{array}{l} \textbf{Outcome:} \ \langle \sigma_1, \sigma_2' \rangle_{c_0} = (0, (s_0, s_0)) \xrightarrow{\begin{bmatrix} (2, s_1) \\ (2, s_4) \end{bmatrix}} \ (2, (s_1, s_4)) \xrightarrow{\begin{bmatrix} (4, s_2) \\ (4, s_5) \end{bmatrix}} (4, (s_2, s_5)) \xrightarrow{\begin{bmatrix} (5, s_6) \\ (5, s_6) \end{bmatrix}} \end{array}$

Cost: Cost₂($\langle \sigma_1, \sigma_2 \rangle_{c_0}$) = 2 · (5 · 2) + 2 · 1 + 3 · 1 = **25**

Nash equilibrium

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

Existence

In all TNCGs, there exists a Nash equilibrium.

(Not explained in this talk)

Studied problems

Studied problems

Problem 1 – Constrained social welfare

Given a TNCG ${\mathcal N}$ and a threshold $c\in {\mathbb N},$ does there exist a play ρ in ${\mathcal G}$ such that

 $SW(\rho) \leq c?$

Problem 2 - Constrained existence of a Nash equilibrium

Given a TNCG \mathcal{N} , a threshold vector $(x_1, \ldots, x_n) \in \mathbb{N}^n$ and a threshold $c \in \mathbb{N}$,

• does there exist a Nash equilibrium σ such that

 $\forall i \in N, \operatorname{Cost}_i(\langle \sigma \rangle_{c_0}) \leq x_i?$

• does there exist a Nash equilibrium σ such that

$$\forall i \in N, x_i \leq \text{Cost}_i(\langle \sigma \rangle_{c_0})?$$

• does there exist a Nash equilibrium σ such that

 $\forall i \in N, SW(\langle \sigma \rangle_{c_0}) \leq c?$

Studied problems

Given a TNCG \mathcal{N} and a threshold $c \in \mathbb{Q}$:

 $\mathsf{PoA}_{\mathcal{N}} \leq c?$

 $\mathsf{PoS}_{\mathcal{N}} \leq c?$

Constrained existence of NEs

Infinite game to finite game

 (\mathcal{G}, c_0)

 (\mathcal{G}_F, c_0)

Outcome characterization of NEs

Let \mathcal{N} be a TNG and let $(x_1, \ldots, x_n) \in \mathbb{N}^n$, does there exist an NE σ in \mathcal{N} such that for all $i \in N \operatorname{Cost}_i(\langle \sigma \rangle_{c_0}) \leq x_i$?

- We can use approaches developped in finite concurrent games;
- In particular: characterization of the outcome of an NE;

if and only if ρ satisfies a "good" property.

- for each player *i*, $\text{Cost}_i(\rho) \leq x_i$;
- ρ satisfies a "good" property?

Outcome characterization of NEs

The good property

Let \mathcal{N} be a TNCG and (\mathcal{G}_F, c_0) be its associated finite concurrent game. A play $\rho = (s_k, \vec{s}_k, s'_k)_{k \in \mathbb{N}} \in \text{Plays}_{\mathcal{G}_F}(c_0)$ is the outcome of a Nash equilibrium in (\mathcal{G}_F, c_0) if, and only if,

$$\forall 1 \leq i \leq n. \ \forall k \in \mathbb{N}. \ \forall b_i \in \mathsf{Mov}_i(s_k). \ i \notin \mathsf{Visit}(\rho_{< k}) \Longrightarrow \\ \mathsf{Cost}_i(\rho_{\geq k}) \leq \underline{\mathsf{Val}}_i(s') + \mathsf{Cost}_i(s_k, (\vec{a}_{k,-i}, b_i), s')$$

where $s' = Up(s_k, (\vec{a}_{k,-i}, b_i)).$

Main ideas of the algorithm

- guessing a finite path ρ in the (finite) game graph;
 - \rightsquigarrow K is exponential;
 - \rightsquigarrow each (d, Config) of ρ needs an exponential space to be stored;
- checking that this path satisfies the outcome characterization of NEs;
- checking that the players's cost satisfies the constraints given by the problem.

Since all $\underline{Val}_i(s)$ may be computed in EXPTIME:

Problem 2 belongs to EXPSPACE.

Conclusion

- We proved that in all TNCGs there exists a Nash equilibrium (not explained in this talk – the proof relies on the notion of Potential games).
- We studied decision problems related to the qualitify of Nash equilibria in TNCGs.

	Symmetric objectives	Asymmetric objectives
Problem 1	PSPACE	EXPSPACE
Problem 2	EXPSPACE	EXPSPACE
Problem 3	EXPSPACE	EXPSPACE