On Subgame Perfect Equilibria in Turn-Based Reachability Timed Games

Thomas $\mathrm{BRIHAYE}^1$ and Aline $\mathrm{GOEMINNE}^{1,2}$

1. Université de Mons (UMONS), Mons, Belgium.

2. Université libre de Bruxelles (ULB), Brussels, Belgium.

FORMATS'21

- 2 (Reachability) Multiplayer Turn-Based Games
- 3 (Reachability) Timed Automata
- 4 (Reachability) Timed Games
- 5 Deciding the constrained existence problem
- 6 Conclusion

Verification and synthesis

- "Testing shows the presence, not the absence of bugs" – Edsger Dijkstra.
- Verification: checking that the system satisfies some specifications.
- Synthesis: building a system which satisfies some specifications by construction.
 - \hookrightarrow games played on graph.

Player (): the system
 Goal: satisfying a property.
 Here: reaching a vertex of the target set
 F₍₎ = {v₄} (reachability objective)

■ Player □: the environment Goal: avoid that.

> The system satisfies the property ⇔ Player ○ has a **winning strategy**.

Too restrictive model

 $(+) \ge 2$ players (non-antagonistic behavior) \sim multiplayer games (+) Real time features \sim arena of the game: timed automaton

Multiplayer (turn-based) Reachability Timed Games

(Reachability) Multiplayer Turn-Based Games

(Turn-based) Multiplayer Reachability Games

 Two (or more) players; Ex: Player \bigcirc and Player \square . Objectives: Player \bigcirc wants to reach $F_{\bigcirc} = \{v_4\};$ Player \square wants to reach $F_{\square} = \{v_4\}$. ~ non antagonistic. For every infinite path (called **play**) ρ , $\rho = \rho_0 \rho_1 \dots$ ■ Gain₍₎(ρ) = $\begin{cases}
1 & \text{if } \exists k \text{ st. } \rho_k \in F_{\bigcirc} \\
0 & \text{otherwise}
\end{cases}$ ■ Gain_□(ρ) = $\begin{cases} 1 & \text{if } \exists k \text{ st. } \rho_k \in F_{\Box} \\ 0 & \text{otherwise} \end{cases}$ Ex: Gain $((v_0v_1)^{\omega}) =$ $(Gain_{\bigcirc}((v_0v_1)^{\omega}), Gain_{\square}((v_0v_1)^{\omega})) = (0, 0).$ Gain $(v_0 v_2 v_3 v_0 v_2 v_4^{\omega}) = (1, 1)$

(Turn-based) Multiplayer Reachability Games

- Strategy: $\sigma_i : V^* V_i \to V;$ <u>Ex:</u> σ_{\bigcirc} and σ_{\square}
- A strategy profile: $(\sigma_{\bigcirc}, \sigma_{\square}) \sim \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = (v_0 v_1)^{\omega}$ (called outcome)
- ₩imhing/strategies (optimality) ~> other solution concepts: equilibria (stability).

Nash equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

O, 📕) 10

Nash equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

- <u>Counter-ex:</u> $(\sigma_{\bigcirc}, \sigma_{\square})$:
 - $(\sigma_{\bigcirc}, \sigma_{\square}) \rightsquigarrow \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = (v_0 v_1)^{\omega};$ • Gain $((v_0 v_1)^{\omega}) = (0, 0).$

Nash equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\Box})$ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

- <u>Counter-ex:</u> $(\sigma_{\bigcirc}, \sigma_{\Box})$:
 - $(\sigma_{\bigcirc}, \sigma_{\square}) \rightsquigarrow \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = (v_0 v_1)^{\omega};$ • $Gain((v_0 v_1)^{\omega}) = (0, 0).$

 \rightsquigarrow not an NE.

Nash equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\square})$ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

- <u>Counter-ex:</u> $(\sigma_{\bigcirc}, \sigma_{\Box})$:
 - $(\sigma_{\bigcirc}, \sigma_{\square}) \rightsquigarrow \langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0} = (v_0 v_1)^{\omega};$ • Gain $((v_0 v_1)^{\omega}) = (0, 0).$
 - \rightsquigarrow not an NE.
- <u>Ex:</u> (*σ*_○, *σ*_□):

!! Uncredible threat

Subgame Perfect Equilibria

refined solution concept: subgame perfect equilibrium.

Subgame perfect equilibrium

A strategy profile $(\sigma_{\bigcirc}, \sigma_{\square})$ is a subgame perfect equilibrium (SPE) if it is an NE from each history.

Subgame Perfect Equilibria

 V_1

 V_0

 V_2

■ (σ_○, σ_□) is not an SPE: there is a profitable deviation from v₀v₂.

V3

O, 📕) 12

Constrained existence problem

Different equilibria may coexist !

Constrained existence problem

Given $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and $(y_1, \ldots, y_n) \in \{0, 1\}^n$, does there exist an equilibrium (NE or SPE) $(\sigma_1, \ldots, \sigma_n)$ such that for all $1 \le i \le n$: $x_i \le \operatorname{Gain}_i(\langle \sigma_1, \ldots, \sigma_n \rangle_{v_0}) \le y_i$?

Rem: if $x_i = 1$ then Player *i* has to win; if $y_i = 0$ then Player *i* has to lose.

For NEs: NP-complete [CFGR16]

■ For SPEs: PSPACE-complete [BBGR18]

 \sim complexity gap

(Reachability) Timed Automata

A (very) simple example

(O, 📕) 15

A (less) simple example

Timed automaton $\ensuremath{\mathcal{A}}$

- clocks: x and y;
- clock reset: y := 0;
- guards: *e.g.*, $y \ge 2$ or x = 1. May be a finite conjunction of $c_i \diamond x_i$ where $\diamond \in \{<, \le, =, \ge, >\}$ and x_i in \mathbb{N} .

• Goal =
$$\{\ell_4\}$$

(Infinite) Transition system T_A

Much more difficult to draw ... For example, a possible path in this transition system: $(\ell_0, (0; 0)) \xrightarrow{d=1} (\ell_2, (1; 0)) \xrightarrow{d=2.4} (\ell_3, (3.4; 2.4))$ where $d \in \mathbb{R}^+$.

 $\approx \text{time-abstract bisimulation on } T_{\mathcal{A}}$ \sim finite number of regions \sim (Finite) Region graph (! size exponential in the size of \mathcal{A})

D, 📕) 16

(Reachability) Timed Games

Reachability timed games

Partitioned Timed Automaton (PTA)

Semantic ~> (Infinite) Turn-Based Reachability Game: Reachability Timed Game

Existence of Nash Equilibria? Existence of Subgame Perfect Equilibria?

Studied problem

Constrained existence problem

Given a PTA \mathcal{A} , $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and $(y_1, \ldots, y_n) \in \{0, 1\}^n$, does **there exist** an equilibrium (NE or SPE) $(\sigma_1, \ldots, \sigma_n)$ in its associated reachability timed game such that for all $1 \le i \le n$: $x_i \le \operatorname{Gain}_i(\langle \sigma_1, \ldots, \sigma_n \rangle_{(\ell_0, 0)}) \le y_i$?

For NEs: EXPTIME-complete [Bre12];

For SPEs: EXPTIME-complete [BG20] (This talk).

 \sim ! no complexity gap

Deciding the constrained existence problem

 Deciding the constrained existence problem in finite reachability games is PSPACE-complete. Deciding the constrained existence problem in finite reachability games is PSPACE-complete.

• X The reachability timed game is infinite.

$\begin{array}{c} \hline 1 \end{array} \text{Reachability timed game} \longrightarrow \text{finite reachability game} \\ & (\text{Region game}) \end{array}$

Region game

Partitioned Timed Automaton

Reachability Timed Game

Region game ~> finite reachability game !

Region game

Partitioned Timed Automaton

Reachability Timed Game

Region game \sim finite reachability game ! but exponential size

(2) \exists SPE \Leftrightarrow in the **reachability timed game** and in the **region** game

(O, 📕) 24

Theorem

```
Let p \in \{0,1\}^n,
There exists an SPE in the Reachability Timed Game with gain
profile p
if and only if
there exists an SPE in the associated Region Game with gain profile p.
```

 \rightsquigarrow one can decide the constrained existence problem in the region game !

 Deciding the constrained existence problem in finite reachability games is PSPACE-complete.

- Deciding the constrained existence problem in finite reachability games is PSPACE-complete.
- X The graph of the region game has a size exponential in the size of the PTA \mathcal{A} \sim (naively) EXPSPACE algorithm.

3 EXPTIME algorithm to decide the constrained existence problem in **finite** reachability games

3) EXPTIME algorithm to decide the constrained existence problem in **finite** reachability games

(Details not given in this talk)

- based on an SPE outcome characterization inspired by the one used in Quantitative Reachability (finite) Games [BBG⁺19];
- running time exponential in the number of players but not in the size of the game graph.

To summarize

- ✓ This latter algorithm decides the constrained existence problem in **finite** reachability game in time complexity **exponential** in the number of players but **polynomial** in the size of the graph of the game.
- ✓ The graph of the region game is **finite** and has a size exponential in the size of the underlying timed automaton of *A*.
- ✓ Deciding the constrained existence problem is equivalent in the reachability timed game or in the region game.

Algorithm to decide the constrained existence problem of SPEs in reachability timed games: runs in exponential time (both in the number of players and in the size of the underlying timed automaton of A)

Conclusion

- The constrained existence problem of SPEs in Reachability Timed Games is in EXPTIME;
- First time that SPEs are studied in this kind of setting (up to our knowledge);
- No complexity gap between NEs and SPEs;
- If there exists an SPE with a given gain profile in the Reachability Timed Game, there exists an SPE with the same gain profile in its associated Region Game.
- Given a bisimulation equivalence on a game which respects some "good" properties, we proved the same result between the game and its quotient game.
- Allows us to handle other kind of objectives?

References I

- Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie van den Bogaard, <u>The complexity of subgame perfect equilibria in</u> quantitative reachability games, CONCUR 2019, 2019, pp. 13:1–13:16.
- Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin, Constrained existence problem for weak subgame perfect equilibria with ω-regular boolean objectives, GandALF 2018, 2018, pp. 16–29.
 - Thomas Brihaye and Aline Goeminne, <u>On subgame perfect equilibria in turn-based</u> reachability timed games, Formal Modeling and Analysis of Timed Systems - 18th International Conference, FORMATS 2020, Vienna, Austria, September 1-3, 2020, Proceedings (Nathalie Bertrand and Nils Jansen, eds.), Lecture Notes in Computer Science, vol. 12288, Springer, 2020, pp. 94–110.

Romain Brenguier,

Nash equilibria in concurrent games : application to timed games, Theses, École normale supérieure de Cachan - ENS Cachan, November 2012.

Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin, The complexity of rational synthesis, ICALP 2016, 2016, pp. 121:1–121:15.