Permissive Equilibria in Multiplayer Reachability Games

<u>Aline GOEMINNE¹</u> Benjamin MONMEGE²

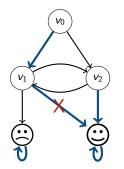
F.R.S.-FNRS & UMONS – Université de Mons, Belgium.
 Aix-Marseille Univ, CNRS, LIS, Marseille, France.

CSL'25 - February 14, 2025

2 Multiplayer reachability games

3 Multi-strategies and permissive Nash equilibria

4 Studied problems



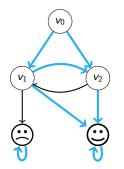
Objective: P_{\bigcirc} wants to reach \bigcirc from v_0 .

 $\rightsquigarrow \sigma_{\bigcirc}$ is a winning strategy.

What happens if the edge (v_1, \textcircled{o}) becomes **unavailable**?

 \rightsquigarrow choosing (v_1, v_2) is also winning.

→ strategies with multiple choices (multi-strategies).



Objective: P_{\bigcirc} wants to reach \bigcirc from v_0 .

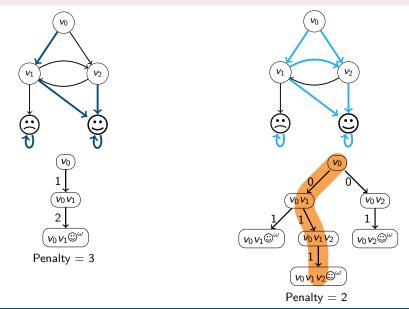
 $\rightsquigarrow \sigma_{\bigcirc}$ is a winning strategy.

What happens if the edge (v_1, \textcircled{o}) becomes **unavailable**?

 \rightsquigarrow choosing (v_1, v_2) is also winning.

→ strategies with multiple choices (multi-strategies).

How to compare two multi-strategies? Is a multi-strategy better than another one?



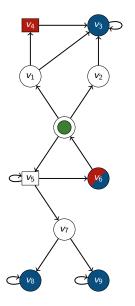
This notion of penalty is used in [BDMR09] in the setting of two-player zero-games with reachability objectives. They consider problems related to the existence of a **winning multi-strategy** with some constraint on the **penalty**.

Our goal: To extend the concept of permissiveness to the multiplayer setting. We study problems related to the existence of a **permissive equilibrium** with some constraints on the **penalties** of the players.

[BDMR09]: <u>Measuring permissivity in finite games</u>, P. Bouyer, M. Duflot, N. Markey and G. Renault, CONCUR'09.

Aline GOEMINNE

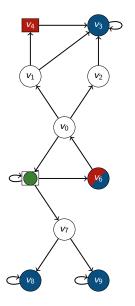
Multiplayer reachability games



- A graph G = (V, E)
- A set of *n* players *N*, Ex: Player \bigcirc and Player \square
- An initial vertex, Ex: v₀

How to play in such a game?

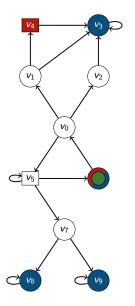
$$\rho = v_0$$



- A graph G = (V, E)
- A set of *n* players *N*, Ex: Player \bigcirc and Player \square
- An initial vertex, Ex: v₀

How to play in such a game?

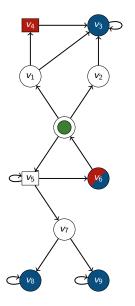
 $\rho = v_0 v_5$



- A graph G = (V, E)
- A set of *n* players *N*, Ex: Player \bigcirc and Player \square
- An initial vertex, Ex: v₀

How to play in such a game?

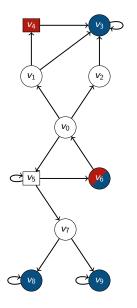
 $\rho = v_0 v_5 v_6$



- A graph G = (V, E)
- A set of *n* players *N*, Ex: Player \bigcirc and Player \square
- An initial vertex, Ex: v₀

How to play in such a game?

 $\rho = v_0 v_5 v_6 v_0 \dots$



- A graph G = (V, E)
- A set of *n* players *N*, Ex: Player \bigcirc and Player \square
- An initial vertex, Ex: v₀

How to play in such a game?

 $\rho = (v_0 v_5 v_6)^{\omega}$

Reachability objective

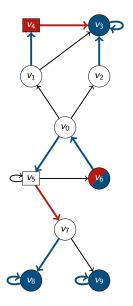
Given a target set $F_i \subseteq V$, for each play $\rho = \rho_0 \rho_1 \dots$,

$$\mathsf{Gain}_i(\rho) = \begin{cases} 1 & \exists k \in \mathbb{N}, \ \rho_k \in F_i \\ 0 & \text{otherwise} \end{cases}$$

Ex: $F_{\bigcirc} = \{v_3, v_6, v_8, v_9\}$ and $F_{\square} = \{v_4, v_6\}$

- Gain $((v_0 v_5 v_6)^{\omega}) = (Gain_{\bigcirc}((v_0 v_5 v_6)^{\omega}), Gain_{\square}((v_0 v_5 v_6)^{\omega})) = (1, 1)$
- $Gain(v_0 v_5 v_7 v_8^{\omega}) = (1,0)$

Simple strategies and Nash equilibria



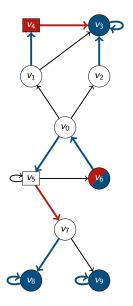
• (Simple) strategy: $\sigma_i : V^* V_i \to V$ Ex: $(\sigma_{\bigcirc}, \sigma_{\square})$

• (Simple) strategy profile: $\sigma = (\sigma_1, \dots, \sigma_n)$ $\rightsquigarrow \langle \sigma \rangle_{v_0}$ the outcome. Ex: $\langle \sigma \bigcirc, \sigma_{\Box} \rangle_{v_0} = v_0 v_5 v_7 v_8^{\omega}$.

Nash equilibrium

A simple strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

Simple strategies and Nash equilibria



• (Simple) strategy: $\sigma_i : V^* V_i \to V$ Ex: $(\sigma_{\bigcirc}, \sigma_{\square})$

• (Simple) strategy profile: $\sigma = (\sigma_1, \dots, \sigma_n)$ $\rightsquigarrow \langle \sigma \rangle_{v_0}$ the outcome. Ex: $\langle \sigma \bigcirc, \sigma_{\Box} \rangle_{v_0} = v_0 v_5 v_7 v_8^{\omega}$.

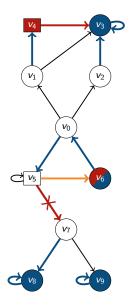
Nash equilibrium

A simple strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

CEx:

- $(\sigma_{\bigcirc}, \sigma_{\square})$ is **not** an NE
- Gain $(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{\nu_0}) = (1, 0)$

Simple strategies and Nash equilibria



• (Simple) strategy: $\sigma_i : V^* V_i \to V$ Ex: $(\sigma_{\bigcirc}, \sigma_{\square})$

• (Simple) strategy profile: $\sigma = (\sigma_1, \dots, \sigma_n)$ $\rightsquigarrow \langle \sigma \rangle_{v_0}$ the outcome. Ex: $\langle \sigma \bigcirc, \sigma_{\Box} \rangle_{v_0} = v_0 v_5 v_7 v_8^{\omega}$.

Nash equilibrium

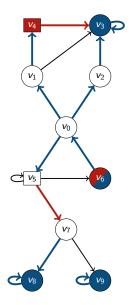
A simple strategy profile σ is a Nash equilibrium (NE) if no player has an incentive to deviate unilaterally.

CEx:

- $(\sigma_{\bigcirc}, \sigma_{\square})$ is **not** an NE
- $Gain(\langle \sigma_{\bigcirc}, \sigma_{\square} \rangle_{v_0}) = (1, 0)$
- σ_{\Box} is a profitable deviation
- $\operatorname{\mathsf{Gain}}_{\Box}(\langle \sigma_{\bigcirc}, \sigma_{\Box} \rangle_{v_0}) = \operatorname{\mathsf{Gain}}_{\Box}((v_0v_5v_6)^{\omega}) = 1$

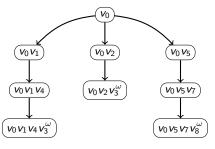
Multi-strategies and permissive Nash equilibria

Multi-strategies



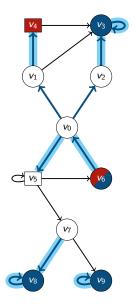
- Multi-strategy: $\Theta_i : V^*V_i \to \mathcal{P}(V) \setminus \{\emptyset\}$ Ex: $(\Theta_{\bigcirc}, \Theta_{\Box})$
- Multi-strategy profile: Θ = (Θ₁,...,Θ_n) → ⟨Θ⟩_{V0} the set of outcomes

Ex: $\langle \Theta_{\Box}, \Theta_{\Box} \rangle_{v_0} = \{ v_0 v_1 v_4 v_3^{\omega}, v_0 v_2 v_3^{\omega}, v_0 v_5 v_7 v_8^{\omega} \}$



• can be seen as a tree \mathcal{T}

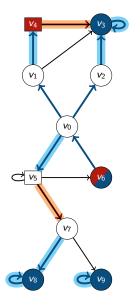
Permissive Nash equilibria



• a simple strategy σ_i is **consistent** with a multi-strategy Θ_i , $\sigma_i \leq \Theta_i$, if for all $hv \in V^*V_i$:

 $\sigma_i(hv) \in \Theta_i(hv).$

Permissive Nash equilibria

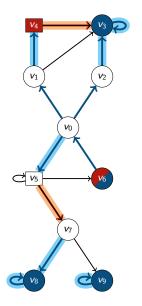


• a simple strategy σ_i is **consistent** with a multi-strategy Θ_i , $\sigma_i \lesssim \Theta_i$, if for all $hv \in V^* V_i$:

 $\sigma_i(hv) \in \Theta_i(hv).$

• a strategy profile $\sigma = (\sigma_1, \ldots, \sigma_n)$ is consistent with a multi-strategy profile $\Theta = (\Theta_1, \ldots, \Theta_n)$ if for each $1 \le i \le n$, $\sigma_i \le \Theta_i$.

Permissive Nash equilibria



• a simple strategy σ_i is **consistent** with a multi-strategy Θ_i , $\sigma_i \leq \Theta_i$, if for all $hv \in V^*V_i$:

 $\sigma_i(hv) \in \Theta_i(hv).$

• a strategy profile $\sigma = (\sigma_1, \ldots, \sigma_n)$ is **consistent** with a multi-strategy profile $\Theta = (\Theta_1, \ldots, \Theta_n)$ if for each $1 \le i \le n, \sigma_i \le \Theta_i$.

Permissive Nash equilibrium

A **multi-strategy profile** Θ is a permissive NE if each strategy profile σ consistent with Θ is an NE.

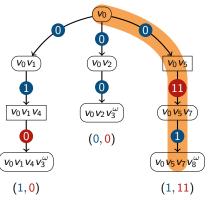
CEx:

- $(\Theta_{\bigcirc}, \Theta_{\square})$ is **not** a permissive NE;
- because $(\sigma_{\bigcirc}, \sigma_{\square})$ is **not** an NE.

Penalties

 V_4 v_1 V_2 v_0 10 C V5 **V**7 Va

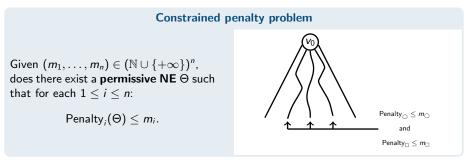
• $w: E \to \mathbb{N}$ a weight function



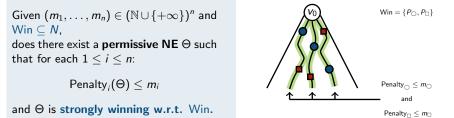
Penalties : (1, 11)

Studied problems

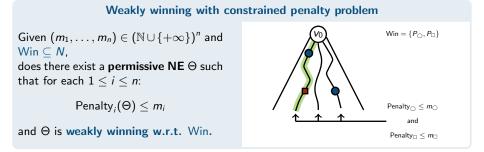
Constrained penalty problems



Strongly winning with constrained penalty problem



Constrained penalty problems



If m_1, \ldots, m_n are encoded in **unary**, the constrained penalty problems belong to PSPACE.

How to solve them?

Key idea

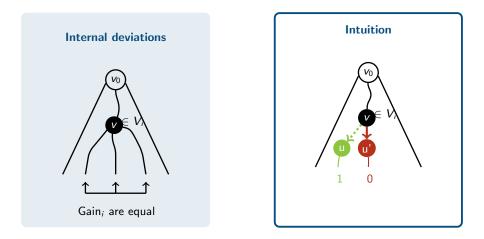
Characterization of Outcomes of permissive Nash equilibria Let \mathcal{T} be a tree.

there exists a permissive NE $(\Theta_1, \ldots, \Theta_n)$ such that $\langle \Theta_1, \ldots, \Theta_n \rangle_{v_0} = \mathcal{T}$ if and only if \mathcal{T} is a good tree.

 \rightsquigarrow Does there exist a tree ${\mathcal T}$ such that

- each $\rho \in \mathcal{T}$ and each $i \in N$, Penalty_i(ρ) $\leq m_i$;
- *T* satisfies the property of being strongly/weakly winning;
- \mathcal{T} is a good tree.

Characterization of outcomes of permissive Nash equilibria $_{\mbox{\scriptsize Good\ tree}}$



Characterization of outcomes of permissive Nash equilibria $_{\mbox{\scriptsize Good\ tree}}$



Deciding the constrained penalty problems

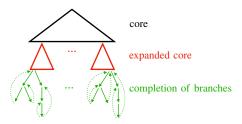
Finite symbolic tree

If there exists a tree ${\mathcal T}$ that

- satisfies the constraints given by the problem;
- is good;

then there exists a tree \mathcal{T}^\prime that

- also satisfies the constraints and is good;
- has a finite representation.



 \blacksquare This finite symbolic tree and the characterization of the outcomes of permissive NEs $\rightsquigarrow APTIME$ algorithm if thresholds are encoded in unary.

Conclusion and future works

In this work:

- permissiveness in multiplayer reachability games ~> permissive equilibria (Nash equilibria, subgame perfect equilibria (SPEs))
- penalties of a multi-strategy (main penalties, retaliation penalties)
- decisions problems related to the existence of a permissive equilibrium with constraints on the penalties of the players
- relevant permissive equilibria
 strongly/weakly winning with constrained penalty problems
- \blacksquare those problems belong to PSPACE if the thresholds are encoded in unary

Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault.

Measuring permissivity in finite games.

In Mario Bravetti and Gianluigi Zavattaro, editors, <u>CONCUR 2009</u>, volume 5710 of LNCS, pages 196–210. Springer, 2009.