
Permissive Equilibria in Multiplayer
Reachability Games

Aline Goeminne1 Benjamin Monmege2

1. F.R.S.-FNRS & UMONS – Université de Mons, Belgium.
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Context

v0

v1 v2

X

Objective: P� wants to reach from v0.

 �� is a winning strategy.

What happens if the edge (v1, ) becomes un-
available?

 choosing (v1, v2) is also winning.
 strategies with multiple choices (multi-strategies).
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Context

How to compare two multi-strategies? Is a multi-strategy better than another one?
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Context

This notion of penalty is used in [BDMR09] in the setting of two-player zero-games with
reachability objectives. They consider problems related to the existence of a winning
multi-strategy with some constraint on the penalty.

Our goal: To extend the concept of permissiveness to the multiplayer setting. We study
problems related to the existence of a permissive equilibrium with some constraints
on the penalties of the players.

[BDMR09]: Measuring permissivity in finite games, P. Bouyer, M. Duflot, N. Markey and G. Renault,

CONCUR’09.
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Reachability games

v0

v2v1

v3v4

v5 v6

v7

v8 v9

A graph G = (V ,E)

A set of n players N, Ex: Player � and Player ⇤
An initial vertex, Ex: v0

How to play in such a game?

⇢ = v0

v6

Reachability objective

Given a target set Fi ✓ V , for each play ⇢ = ⇢0⇢1 . . .,

Gaini (⇢) =

(
1 9k 2 N, ⇢k 2 Fi

0 otherwise

Ex: F� = {v3, v6, v8, v9} and F⇤ = {v4, v6}
Gain((v0v5v6)!) =
(Gain�((v0v5v6)!),Gain⇤((v0v5v6)

!)) = (1, 1)

Gain(v0v5v7v!
8 ) = (1, 0)
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Simple strategies and Nash equilibria

v0

v2v1

v3v4

v5 v6

v7

v8 v9

(Simple) strategy: �i : V
⇤Vi ! V

Ex: (��,�⇤)

(Simple) strategy profile: � = (�1, . . . ,�n)
 h�iv0 the outcome.
Ex: h��,�⇤iv0 = v0v5v7v!

8 .

Nash equilibrium

A simple strategy profile � is a Nash equilibrium
(NE) if no player has an incentive to deviate uni-
laterally.

CEx:

(��,�⇤) is not an NE

Gain(h��,�⇤iv0) = (1, 0)

�⇤ is a profitable deviation

Gain⇤(h��,�⇤iv0) = Gain⇤((v0v5v6)
!) = 1

Aline Goeminne Permissive Equilibria in Multiplayer Reachability Games 9



Simple strategies and Nash equilibria

v0

v2v1

v3v4

v5 v6

v7

v8 v9

(Simple) strategy: �i : V
⇤Vi ! V

Ex: (��,�⇤)

(Simple) strategy profile: � = (�1, . . . ,�n)
 h�iv0 the outcome.
Ex: h��,�⇤iv0 = v0v5v7v!

8 .

Nash equilibrium

A simple strategy profile � is a Nash equilibrium
(NE) if no player has an incentive to deviate uni-
laterally.

CEx:

(��,�⇤) is not an NE

Gain(h��,�⇤iv0) = (1, 0)

�⇤ is a profitable deviation

Gain⇤(h��,�⇤iv0) = Gain⇤((v0v5v6)
!) = 1

Aline Goeminne Permissive Equilibria in Multiplayer Reachability Games 9



Simple strategies and Nash equilibria

v0

v2v1

v3v4

v5 v6

v7

v8 v9

X

(Simple) strategy: �i : V
⇤Vi ! V

Ex: (��,�⇤)

(Simple) strategy profile: � = (�1, . . . ,�n)
 h�iv0 the outcome.
Ex: h��,�⇤iv0 = v0v5v7v!

8 .

Nash equilibrium

A simple strategy profile � is a Nash equilibrium
(NE) if no player has an incentive to deviate uni-
laterally.

CEx:

(��,�⇤) is not an NE

Gain(h��,�⇤iv0) = (1, 0)

�⇤ is a profitable deviation

Gain⇤(h��,�⇤iv0) = Gain⇤((v0v5v6)
!) = 1

Aline Goeminne Permissive Equilibria in Multiplayer Reachability Games 9



Multi-strategies and permissive Nash equilibria



Multi-strategies

v0

v2v1

v3v4
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Multi-strategy: ⇥i : V
⇤Vi ! P(V ) \ {;}

Ex: (⇥�,⇥⇤)

Multi-strategy profile: ⇥ = (⇥1, . . . ,⇥n)
 h⇥iv0 the set of outcomes
Ex: h⇥�,⇥⇤iv0 = {v0v1v4v!

3 , v0v2v
!
3 , v0v5v7v

!
8 }
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v0v1

v0v1v4

v0v1v4v
!
3

v0v2

v0v2v!
3

v0v5

v0v5v7

v0v5v7v
!
8

can be seen as a tree T
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Permissive Nash equilibria

v0

v2v1

v3v4

v5 v6

v7

v8 v9

a simple strategy �i is consistent with a
multi-strategy ⇥i , �i . ⇥i , if for all hv 2 V ⇤Vi :

�i (hv) 2 ⇥i (hv).

a strategy profile � = (�1, . . . ,�n) is consistent
with a multi-strategy profile ⇥ = (⇥1, . . . ,⇥n) if
for each 1  i  n, �i . ⇥i .

Permissive Nash equilibrium

A multi-strategy profile ⇥ is a permissive NE if
each strategy profile � consistent with ⇥ is an NE.

CEx:

(⇥�,⇥⇤) is not a permissive NE;

because (��,�⇤) is not an NE.
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Penalties
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w : E ! N a weight function

v0

v0v1

v0v1v4

v0v1v4v!
3

(1, 0)

v0v2

v0v2v!
3

(0, 0)

v0v5

v0v5v7

v0v5v7v!
8

(1, 11)

0

1

0

0

0

0

11

1

Penalties : (1, 11)
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Studied problems



Constrained penalty problems

Constrained penalty problem

Given (m1, . . . ,mn) 2 (N [ {+1})n,
does there exist a permissive NE ⇥ such
that for each 1  i  n:

Penaltyi (⇥)  mi .

v0

Penalty�  m�

and

Penalty⇤  m⇤

Strongly winning with constrained penalty problem

Given (m1, . . . ,mn) 2 (N[{+1})n and
Win ✓ N,
does there exist a permissive NE ⇥ such
that for each 1  i  n:

Penaltyi (⇥)  mi

and ⇥ is strongly winning w.r.t. Win.

v0

Penalty�  m�

and

Penalty⇤  m⇤

Win = {P�,P⇤}
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Constrained penalty problems

Weakly winning with constrained penalty problem

Given (m1, . . . ,mn) 2 (N[{+1})n and
Win ✓ N,
does there exist a permissive NE ⇥ such
that for each 1  i  n:

Penaltyi (⇥)  mi

and ⇥ is weakly winning w.r.t. Win.

v0

Penalty�  m�

and

Penalty⇤  m⇤

Win = {P�,P⇤}

If m1, . . . ,mn are encoded in unary,
the constrained penalty problems belong to PSPACE.
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How to solve them?
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Key idea

Characterization of Outcomes of permissive Nash equilibria

Let T be a tree,

there exists a permissive NE (⇥1, . . . ,⇥n) such that
h⇥1, . . . ,⇥niv0 = T

if and only if
T is a good tree.

 Does there exist a tree T such that

each ⇢ 2 T and each i 2 N, Penaltyi (⇢)  mi ;

T satisfies the property of being strongly/weakly winning;

T is a good tree.
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Characterization of outcomes of permissive Nash equilibria
Good tree

Internal deviations

v0

v 2 Viv

Gaini are equal

Intuition

v0

v 2 Vi

u’u

01
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Characterization of outcomes of permissive Nash equilibria
Good tree

External deviations

v0

v 2 Vi

u

2 Fi

v

Gaini = 1

Intuition

v0

v 2 Vi

u

u0

0 1

2 Fi
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Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T 0 that

also satisfies the constraints and is good;

has a finite representation.

core

expanded core�

� completion of branches

This finite symbolic tree and the characterization of the outcomes of permissive NEs
 APTIME algorithm if thresholds are encoded in unary.
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Conclusion and future works

In this work:

permissiveness in multiplayer reachability games  permissive equilibria (Nash
equilibria, subgame perfect equilibria (SPEs))

penalties of a multi-strategy (main penalties, retaliation penalties)

decisions problems related to the existence of a permissive equilibrium with
constraints on the penalties of the players

relevant permissive equilibria
 strongly/weakly winning with constrained penalty problems

those problems belong to PSPACE if the thresholds are encoded in unary
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