
Algorithmique I

Aline Goeminne

Chapitre VI :
Problèmes d’accessibilité pour résoudre un problème

d’ordonnancement de tâches

2025 – 2026

Table des matières

1 Introduction

2 Problème d’ordonnancement

3 Problème d’accessibilité

Définitions et algorithme näıf

Relations de simulation

Algorithme amélioré

4 De l’ordonnancement à l’accessibilité

Etats du système

Transitions du système

Relation de simulation

Aline Goeminne Algorithmique I – Chapitre VI 2

Introduction

Problème d’ordonnancement

ensemble de tâches

nombre de processeurs

ordonnanceur

Le système est-il ordonnançable ?

oui non

Aline Goeminne Algorithmique I – Chapitre VI 4

Problème d’accessibilité

v1

v2

v3

v4

v5

v6

un ensemble de sommets/états : {v1, v2, v3, v4, v5, v6} ;
un ensemble d’arcs/transitions ;

v2 : état initial ;

v5 : état cible.

Aline Goeminne Algorithmique I – Chapitre VI 5

Ordonnancement =) accessibilité

ensemble de tâches

nombre de processeurs

ordonnanceur

Le système est-il ordonnançable ?

oui non

=)

v1

v2

v3

v4

v5

v6

Aline Goeminne Algorithmique I – Chapitre VI 6

Problème d’ordonnancement

Définition

Un système temps réel à tâches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments

suivants :

T = {⌧1, ⌧2, . . . , ⌧n} un ensemble de n tâches ;

pour tout ⌧i 2 T , Ti > 0 est le temps minimal entre deux arrivées d’une

tâche ⌧i ;

pour tout ⌧i 2 T , Di > 0 est la deadline relative ;

pour tout ⌧i 2 T , Ci > 0 est le temps d’exécution ;

⌧ 1i

Ti

⌧ 2i

Di

Ci

⌧ 3i ⌧ 3i

Aline Goeminne Algorithmique I – Chapitre VI 8

Définition

Un système temps réel à tâches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments

suivants :

T = {⌧1, ⌧2, . . . , ⌧n} un ensemble de n tâches ;

pour tout ⌧i 2 T , Ti > 0 est le temps minimal entre deux arrivées d’une

tâche ⌧i ;

pour tout ⌧i 2 T , Di > 0 est la deadline relative ;

pour tout ⌧i 2 T , Ci > 0 est le temps d’exécution ;

Hypothèses :

temps discret ;

travaux non parallélisables mais possibilité de migrer de processeur ;

la préemption et la migration non coûteux en temps ;

pour tout 1  i  n, Ti � Di .

Aline Goeminne Algorithmique I – Chapitre VI 8

Exemple

Soit un système muni de 2 processeurs et de 3 tâches :

⌧i Ti Di Ci

⌧1 6 6 4

⌧2 6 5 5

⌧3 7 3 2

Ordonnanceur (intuition) : place sur les processeurs les tâches actives de plus

haute importance (dont les indices sont les plus petits).

Exemple d’exécution du système

Π1

Π2

τ1

τ3

τ2

τ1

τ2

τ3

 la tâche ⌧3 rate sa deadline.

 le système n’est pas ordonnançable avec cet ordonnanceur.

Aline Goeminne Algorithmique I – Chapitre VI 9

Problème : Etant donné un système muni de m processeurs et de n tâches

ainsi qu’un ordonnanceur, existe-t-il une exécution possible du système telle

qu’une tâche rate sa deadline ?

si oui, le système n’est pas ordonnançable avec cet ordonnanceur.

ce problème est PSPACE-complet.

Supposons dans un premier temps que l’on sache comment passer de ce

problème d’ordonnancement à un problème d’accessibilité dans un graphe.

(Voir Section 4 pour plus de détails)

ensemble de tâches

nombre de processeurs

ordonnanceur

Le système est-il ordonnançable ?

oui non

=)

v1

v2

v3

v4

v5

v6

Le graphe obtenu peut être extrêmement grand.

Les états du graphe peuvent être dotés d’une sémantique particulière qui

permet d’améliorer l’algorithme d’accessibilité “näıf”.

Aline Goeminne Algorithmique I – Chapitre VI 10

Problème d’accessibilité

Définitions et algorithme näıf

Définition

On note G = (V,E) un graphe avec V un ensemble de sommets/états et

E ✓ V ⇥ V un ensemble d’arcs/transitions.

Soit G un graphe, un chemin (fini) dans G est une suite (fini) de sommets de

G, ⇡ = ⇡1 . . .⇡k telle que pour tout 0  ` < k , (⇡`,⇡`+1) 2 E.

Soit G un graphe et I ✓ V un sous-ensemble de sommets initiaux, l’ensemble

des sommets accessibles depuis I, noté Reach(G, I), est défini par :

Reach(G, I) = {v 2 V | 9⇡ = ⇡1 . . .⇡` tq ⇡1 2 I ^ ⇡` = v}

v1

v2

v3

v4

v5

v6

I = {v2}
Reach(G, I) = {v2, v3, v4, v5, v6}

Aline Goeminne Algorithmique I – Chapitre VI 13

Définition

Soit G un graphe, I un sous-ensemble de sommets initiaux et T un sous-

ensemble de sommets cibles,
le problème d’accessibilité demande s’il est possible d’atteindre un sommet de

T depuis un sommet de I,

Reach(G, I) \ T 6= ; ?

Soit G un graphe, soit v 2 V et soit S ✓ V :

Succ(v) = {v 0 2 V | (v , v 0
) 2 E} est l’ensemble des successeurs de v ;

Succ(S) =

[

v2S

Succ(v)

Aline Goeminne Algorithmique I – Chapitre VI 14

Algorithme “näıf”

Algorithme 1

1 i 0

2 R0 I

3 répéter
4 Ri�1 Ri

5 i i + 1

6 Ri Ri�1 [Succ(Ri�1)

7 si Ri \ T 6= ; alors
8 retourner Accessible

9 jusqu’à Ri = Ri�1

10 retourner Non accessible

 algorithme polynomial en la taille du graphe.

Aline Goeminne Algorithmique I – Chapitre VI 15

Relations de simulation

Définition

Soit G un graphe, une relation de simulation 1
sur G est un préordre

2

�✓ V⇥V tel que : pour tout v1, v2 et v3 2 V tels que (v1, v2) 2 E et v1 � v3,
il existe v4 2 V tel que (v3, v4) 2 E et v2 � v4.

v1

v2

v3�

v4�

Rem : Si v1 � v3, on dit que v3 simule v1 ou que v1 est simulé par v3.

1. Rappel : � est un préordre si (1) pour tout v 2 V, v � v (réflexivité) et (2) pour tout
v1, v2, v3 2 V, si v1 � v2 et v2 � v3, alors v1 � v3 (transitivité).

2. La notion de relation de simulation peut-être définie de manière plus générale dans le cadre
des systèmes de transitions.

Aline Goeminne Algorithmique I – Chapitre VI 17

Définition

Soit G un graphe, une relation de simulation 1
sur G est un préordre

2

�✓ V⇥V tel que : pour tout v1, v2 et v3 2 V tels que (v1, v2) 2 E et v1 � v3,
il existe v4 2 V tel que (v3, v4) 2 E et v2 � v4.

v1

v2

v3�

v4�

Rem : Si v1 � v3, on dit que v3 simule v1 ou que v1 est simulé par v3.

Soit �✓ V ⇥ V une relation de simulation et soit T ✓ V, on dit que � est

compatible avec T si pour tout v1, v2 2 V tels que v1 � v2,
si v1 2 T, alors v2 2 T.

v1 v2�

2 T =) 2 T

(Dans la suite on supposera � compatible avec T)
Aline Goeminne Algorithmique I – Chapitre VI 17

Conséquences

Si on peut atteindre T depuis v1 et si v1 � u1, alors on peut atteindre T

depuis u1.

v1

.

.

.

2 T

u1�

�

�

.

.

.

� 2 T

Aline Goeminne Algorithmique I – Chapitre VI 18

Conséquences

Lorsque v1 et v2, tels que v1 � v2, ont été calculés à une étape de l’algorithme

d’accessibilité, nous ne devons plus calculer les successeurs de v1.

Aucun chemin depuis v1 n’atteint T.

On peut ne pas explorer ses succes-

seurs.

Il existe un chemin depuis v1 qui atteint T.
Donc il existe un chemin depuis v2 qui at-

teint T.

On peut se contenter d’explorer les succes-

seurs de v2.

Aline Goeminne Algorithmique I – Chapitre VI 19

Algorithme amélioré

Algorithme amélioré

Étant donnés G un graphe, � une relation de simulation sur G et S ✓ V un

sous-ensemble de sommets,

Max
�
(S) = {v 2 S | 8v 0 2 S, (v � v 0

=) v = v 0
)}.

Intuitivement : Max
�
(S) est obtenu depuis S en enlevant tous les

sommets qui sont simulés par un autre sommet de S.

Les éléments de Max
�
(S) ne sont pas comparables selon �.

Ces ensembles d’éléments incomparables sont appelés des antichâınes.

Aline Goeminne Algorithmique I – Chapitre VI 21

Algorithme amélioré

Algorithme 2

1 i 0

2 R̃0 Max
�
(I)

3 répéter
4 R̃i�1 R̃i

5 i i + 1

6 R̃i R̃i�1 [Succ(R̃i�1)

7 R̃i Max
�
(R̃i)

8 si R̃i \ T 6= ; alors
9 retourner Accessible

10 jusqu’à R̃i = R̃i�1

11 retourner Non accessible

Aline Goeminne Algorithmique I – Chapitre VI 22

Algorithme amélioré

Lemme 1. Pour tout S ✓ V, Max
�
(Succ(Max

�
(S))) = Max

�
(Succ(S)).

Lemme 2. Pour tout S1, S2 ✓ V,

Max
�
(S1 [S2) = Max

�
(Max

�
(S1) [Max

�
(S2)).

Lemme 3. Etant donnés G un graphe, I un ensemble de sommets initiaux, T

un ensemble de sommets cibles et � une relation de simulation sur G, posons

R0,R1, . . . et R̃0, R̃1, . . . qui dénotent respectivement la séquence d’ensemble

calculée par l’Algorithme 1 et l’Algorithme 2. Pour tout i � 0, R̃i = Max
�
(Ri).

Aline Goeminne Algorithmique I – Chapitre VI 23

Algorithme amélioré

Lemme 3. Etant donnés G un graphe, I un ensemble de sommets initiaux, T

un ensemble de sommets cibles et � une relation de simulation sur G, posons

R0,R1, . . . et R̃0, R̃1, . . . qui dénotent respectivement la séquence d’ensemble

calculée par l’Algorithme 1 et l’Algorithme 2. Pour tout i � 0, R̃i = Max
�
(Ri).

Preuve : Montrons le par récurrence sur i .

Cas de base : si i = 0, R̃0 = Max�(I) et R0 = I OK.

(HR) R̃k = Max�(Rk), montrons que la propriété est vraie pour i = k + 1.

R̃k+1 = Max�
⇣
R̃k [Succ(R̃k)

⌘
(Par def.)

= Max�
⇣
Max�(R̃) [Max�(Succ(R̃k))

⌘
(Par Lem. 2)

= Max�
⇣
Max�(Max�(Rk)) [Max�(Succ(Max�(Rk)))

⌘
(Par HR)

= Max�
⇣
Max�(Rk) [Max�(Succ(Rk))

⌘
(Par Lem. 1)

= Max� (Rk [Succ(Rk)) (Par Lem. 2)

= Max�(Rk+1) (Par def.)

Aline Goeminne Algorithmique I – Chapitre VI 24

Théorème 4. Etant donnés G, I, T et �, l’Algorithme 2 termine toujours et

retourne “Accessible” ssi T est accessible depuis I.

La preuve se base sur une comparaison entre la séquence R0,R1, . . . calculée par
l’Algo. 1 (correct et qui termine) et la séquence R̃0, R̃1, . . . calculée par l’Algo. 2.

I) Supposons que T est accessible dans G en k étapes et pas moins.

v02 I

2 R0

v1

2 R1

. . . vk

2 Rk

2 T

I.1) Supposons que Algo 2 s’arrête en ` < k étapes.

Soit R̃` \ T 6= ;, mais R̃` ✓ R`, donc R` \ T 6= ; et Algo 1 devrait s’arrêter en
< k étapes. CONTRAD.

Soit R̃` = R̃`�1. On a alors que Max�(R`) = Max�(R`�1) (par Lem. 3) mais
R` 6= R`�1 (sinon Algo 1 s’arrêterait en < k étapes). En particulier, tous les
éléments de R` sont simulés par un élément de R`�1.

8u 2 R`, 9u0 2 R`�1 u � u0 (?)

Si il existe u0 2 R`�1 tel que vk � u0, alors comme vk 2 T, on a aussi u0 2 T
et donc R`�1 \ T 6= ;. CONTRAD

Aline Goeminne Algorithmique I – Chapitre VI 25

La preuve se base sur une comparaison entre la séquence R0,R1, . . . calculée par
l’Algo. 1 (correct et qui termine) et la séquence R̃0, R̃1, . . . calculée par l’Algo. 2.
I) Supposons que T est accessible dans G en k étapes et pas moins.

v02 I

2 R0

v1

2 R1

. . . vk

2 Rk

2 T

I.1) Supposons que Algo 2 s’arrête en ` < k étapes.

Soit R̃` \ T 6= ;, mais R̃` ✓ R`, donc R` \ T 6= ; et Algo 1 devrait s’arrêter en
< k étapes. CONTRAD.

Soit R̃` = R̃`�1. On a alors que Max�(R`) = Max�(R`�1) (par Lem. 3) mais
R` 6= R`�1 (sinon Algo 1 s’arrêterait en < k étapes). En particulier, tous les
éléments de R` sont simulés par un élément de R`�1.

8u 2 R`, 9u0 2 R`�1 u � u0 (?)

Si il existe u0 2 R`�1 tel que vk � u0, alors comme vk 2 T, on a aussi u0 2 T
et donc R`�1 \ T 6= ;. CONTRAD

Aline Goeminne Algorithmique I – Chapitre VI 25

v02 I

2 R0

v1

2 R1

. . . vk

2 Rk

2 T

8u 2 R`, 9u0 2 R`�1 u � u0 (?)

Sinon, soit 0  m < k, le plus petit indice 3 tel que

9u0 2 R`�1, vm � u0 et ¬(9u00 2 R`�1, vm+1 � v 00) (??)

Puisque nous sommes dans la situation suivante :

vm u0�

vm+1 x� y�

Il existe x 2 V, tel que x 2 R` (car u0 2 R`�1), (u
0, x) 2 E et vm+1 � x .

Comme x 2 R`, il existe y 2 R`�1 tel que x � y par (?).
CONTRAD avec (??).

3. Un tel indice existe grâce à (?) (v` 2 R`) et le point précédent.
Aline Goeminne Algorithmique I – Chapitre VI 26

v02 I

2 R0

v1

2 R1

. . . vk

2 Rk

2 T

I.2) Algo 2 s’arrête à l’étape k.

vk 2 T et vk 2 Rk (par hypothèse) =) Rk \ T 6= ;.
R̃k = Max�(Rk) (par Lem. 3) donc il existe v 0 2 R̃k tel que vk � v 0.

Comme vk 2 T, v 0 2 T et donc R̃k \ T 6= ;
Algo 2 s’arrête à l’étape k et retourne“Accessible”.

II) Supposons que T n’est pas accessible dans G.

Pour tout i � 0, Ri \ T = ; ;
Comme R̃i ✓ Ri , R̃i \ T = ; (pour tout i � 0).

Algo 2 ne s’arrêtera pas en retournant “Accessible”.

Il reste à prouver que la boucle s’arrête.

Comme T n’est pas accessible, il existe k tel que Rk = Rk�1.

Dans ce cas Max�(Rk) = Max�(Rk�1).

Donc, R̃k = R̃k�1 et Algo 2 s’arrête en retournant “Non accessible”.

Aline Goeminne Algorithmique I – Chapitre VI 27

De l’ordonnancement à l’accessibilité

Définition (rappel)

Un système temps réel à tâches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments

suivants :

T = {⌧1, ⌧2, . . . , ⌧n} un ensemble de n tâches ;

pour tout ⌧i 2 T , Ti > 0 est le temps minimal entre deux arrivées d’une

tâche ⌧i ;

pour tout ⌧i 2 T , Di > 0 est la deadline relative ;

pour tout ⌧i 2 T , Ci > 0 est le temps d’exécution ;

Hypothèses :

temps discret ;

travaux non parallélisables mais possibilité de migrer de processeur ;

la préemption et la migration non coûteux en temps ;

pour tout 1  i  n, Ti � Di .

Aline Goeminne Algorithmique I – Chapitre VI 29

Questions :

Comment définir les états/sommets ?

Comment définir les transitions/arcs entre ces états ?

Quels états choisir comme états initiaux ?

Quels états choisir comme états cibles ?

Aline Goeminne Algorithmique I – Chapitre VI 30

Etats du système

Etats du système

Afin de modéliser l’exécution du système, les seules informations nécessaires à

conserver à chaque instant sont :

pour chaque tâche ⌧i 2 T , nat(⌧i) a est le plus petit laps de temps

possible avant l’arrivée d’une prochaine tâche ⌧i ;

pour chaque tâche ⌧i 2 T , rct(⌧i) b est le temps d’exécution restant pour

la tâche ⌧i en cours de traitement.

a. nat pour (earliest) next arrival time
b. rct pour remaining processing time

Soit T = {⌧1, . . . , ⌧n} un ensemble de tâches, un état du système de T est

un uplet S = h(rctS(⌧i), natS(⌧i))1ini avec :

rctS : T ! {0, 1, . . . ,Cmax} est une fonction telle que Cmax = maxi Ci ;

natS : T ! {0, 1, . . . ,Tmax} est une fonction avec Tmax = maxi Ti .

L’ensemble des états du système est noté States(T).

Aline Goeminne Algorithmique I – Chapitre VI 32

Etats du système

Exemple

Soit un système muni de 2 processeurs et de 3 tâches :

⌧i Ti Di Ci

⌧1 6 6 4

⌧2 6 5 5

⌧3 7 3 2

Exemple d’exécution du système

Π1

Π2

τ1

τ3

τ2

τ1

τ2

τ3

L’état qui correspond à la croix rouge est donné par :

⌧1 ⌧2 ⌧3
rct 1 3 1

nat 3 4 4

 h(1, 3), (3, 4), (1, 4)i

Aline Goeminne Algorithmique I – Chapitre VI 33

Tâches éligibles, actives, en attente

L’ensemble des tâches éligibles dans un état S est donné par :

Eligible(S) = {⌧i 2 T | natS(⌧i) = 0 ^ rctS(⌧i) = 0}.

L’ensemble des tâches actives dans un état S est donné par :

Active(S) = {⌧i 2 T | rctS(⌧i) > 0}.

L’ensemble des tâches en attente dans un état S est donné par :

Idle(S) = T \ Active(S).

Aline Goeminne Algorithmique I – Chapitre VI 34

Laxité d’une tâche et mauvais états

Comment caractériser qu’une tâche râte sa deadline ?

La laxité de la tâche ⌧i dans un état S est donné par :

LaxityS(⌧i) = natS(⌧i)� (Ti � Di)� rctS(⌧i).

L’ensemble des mauvais états/états défaillants est défini par :

FailT = {S 2 States(T) | il existe ⌧i 2 Active(S), LaxityS(⌧i) < 0}

⌧i

(Ci ,Ti)

t

(rct(⌧i), nat(⌧i))

Di 1 t = Ti � nat(⌧i)

2 temps restant ! deadline : Di � t

3 temps d’exécution encore

nécessaire : rct(⌧i)

4 Condition à respecter : (2) � (3)

Aline Goeminne Algorithmique I – Chapitre VI 35

L’ensemble des mauvais états/états défaillants est défini par :

FailT = {S 2 States(T) | il existe ⌧i 2 Active(S), LaxityS(⌧i) < 0}

⌧i

(Ci ,Ti)

t

(rct(⌧i), nat(⌧i))

Di 1 t = Ti � nat(⌧i)

2 temps restant ! deadline : Di � t

3 temps d’exécution encore

nécessaire : rct(⌧i)

4 Condition à respecter : (2) � (3)

(2) � (3)

Di � t � rct(⌧i)

Di � (Ti � nat(⌧i)) � rct(⌧i)

nat(⌧i)� (Ti � Di)� rct(⌧i) � 0

LaxityS(⌧i) � 0

Aline Goeminne Algorithmique I – Chapitre VI 36

Intuition

⌧i Ti Di Ci

⌧1 6 6 4

⌧2 6 5 5

⌧3 7 3 2

Π1

Π2

τ1

τ3

τ2

τ1

τ2

τ3

h(0, 0), (0, 0), (0, 0)i

h(4, 6), (0, 0), (2, 7)i

(⌧1 ^ ⌧3 arrivent)

L(⌧3)=1

h(3, 5), (0, 0), (1, 6)i

(1 unité de temps s’écoule)

L(⌧3)=1

h(3, 5), (5, 6), (1, 6)i

(⌧2 arrive)

h(2, 4), (4, 5), (1, 5)i

(1 unité de temps s’écoule)

L(⌧3)=0

h(1, 3), (3, 4), (1, 4)i

(1 unité de temps s’écoule)

L(⌧3) = �1
Aline Goeminne Algorithmique I – Chapitre VI 37

Transitions du système

Ordonnanceur

Un ordonnanceur pour T sur m processeurs est une fonction Run :

States(T) �! P(T) telle que, pour tout S :

Run(S) ✓ Active(S) ;

0  |Run(S)|  m.

Exemple d’ordonnanceur :

Soit S un état du système et ` = min{m, |Active(S)|}, l’ordonnanceur GFP est

une fonction RunGFP telle que : si RunGFP = {⌧i1 , ⌧i2 , . . . , ⌧i`}, alors pour tout
1  j  ` et pour tout ⌧k 2 Active(S) \ RunGFP, on a k > ij .

Les tâches sont classées par ordre de priorité (celles d’indice le plus petit sont

les plus prioritaires) et les tâches actives les plus prioritaires sont ordonnancées

en premier.

Aline Goeminne Algorithmique I – Chapitre VI 39

Transitions (2 types de transitions)

1 Transitions de requêtes : si on est dans un état S, un ensemble de tâches

⌧ ✓ Eligible(S) éligibles arrivent, si ⌧i 2 ⌧ , rct(⌧i) = Ci et nat(⌧i) = Ti .

2 transitions de tick d’horloge : modélisation de l’écoulement d’une unité

de temps ; si on est dans un état S,

décrémenter les rct de toutes les tâches de Run(S) (toutes les tâches
ordonnancées)
décrémenter les nat de toutes les tâches du système.

(Pour plus de formalisme se référer à [GGL13])

[GGL13] : Multiprocessor schedulability of arbitrary deadline sporadic tasks : complexity and antichain

algorithm, G. Geeraerts, J. Goosens and M. Lindström, Real-Time Syst 2013.

Aline Goeminne Algorithmique I – Chapitre VI 40

Exemple

⌧i Ti Di Ci

⌧1 6 6 4

⌧2 6 5 5

⌧3 7 3 2

h(0, 0), (0, 0), (0, 0)i

h(4, 6), (5, 6), (2, 7)i

h(3, 5), (4, 5), (2, 6)i

h(2, 4), (3, 4), (2, 5)i

h(4, 6), (0, 0), (2, 7)i

h(3, 5), (0, 0), (1, 6)i

h(3, 5), (5, 6), (1, 6)i

h(2, 4), (4, 5), (1, 5)i

h(1, 3), (3, 4), (1, 4)i

h(4, 6), (0, 0), (0, 0)i

h(3, 5), (0, 0), (0, 0)i

. . .

⌧ = {⌧1, ⌧2, ⌧3} ⌧ = {⌧1, ⌧3}⌧ = {⌧1}

ticktick tick

⌧ = {⌧2}

tick

tick

tick

⌧ = ;

Aline Goeminne Algorithmique I – Chapitre VI 41

Retour au problème d’accessibilité

Soient T un ensemble de tâches et Run un ordonnanceur sur m processeurs, on

définit :

G = (States(T),E0
) avec E

0
les transitions de requêtes et de tick d’horloge

comme définies précédemment.

I = {h(0, 0), . . . , (0, 0)i}
T = FailT .

alors on a

Reach(G, I) \ T 6= ;
ssi

il existe une exécution du système telle qu’une tâche dépasse sa deadline

(le système n’est pas ordonnançable)

Aline Goeminne Algorithmique I – Chapitre VI 42

Relation de simulation

Relation de simulation

Soit T un ensemble de tâches, le préordre idle tasks �id✓ States(T) ⇥
States(T) est tel que pour tout S1, S2 2 States(T), S1 �id S2 si et seule-

ment si :

1 rctS1 = rctS2 ;

2 Pour tout ⌧i 2 T tel que rctS1(⌧i) = 0 : natS1(⌧i) � natS2(⌧i) ;

3 Pour tout ⌧i 2 T tel que rctS1(⌧i) > 0 : natS1(⌧i) = natS2(⌧i).

Intuitivement : S2 simule S1 si

1 les deux états cöıncident sur leurs tâches actives (i.e., les tâches ⌧i telles
que rctS1(⌧i) > 0)

2 la valeur de nat de chaque tâche en attente est plus petite que dans S2 que

S1.

Exemple :
Soient S1 = h(0, 3), (2, 3)i, S2 = h(0, 1), (2, 3)i et S3 = h(0, 1), (3, 4)i.

S1 �id S2

S2 et S3 non comparables.

Aline Goeminne Algorithmique I – Chapitre VI 44

Relation de simulation

Soit T un ensemble de tâches, le préordre idle tasks �id✓ States(T) ⇥
States(T) est tel que pour tout S1, S2 2 States(T), S1 �id S2 si et seule-

ment si :

1 rctS1 = rctS2 ;

2 Pour tout ⌧i 2 T tel que rctS1(⌧i) = 0 : natS1(⌧i) � natS2(⌧i) ;

3 Pour tout ⌧i 2 T tel que rctS1(⌧i) > 0 : natS1(⌧i) = natS2(⌧i).

Si S1 �id S2, alors Active(S1) = Active(S2).

Vrai car rctS1 = rctS2 .

Aline Goeminne Algorithmique I – Chapitre VI 45

Relation de simulation

Soit T un ensemble de tâches, le préordre idle tasks �id✓ States(T) ⇥
States(T) est tel que pour tout S1, S2 2 States(T), S1 �id S2 si et seule-

ment si :

1 rctS1 = rctS2 ;

2 Pour tout ⌧i 2 T tel que rctS1(⌧i) = 0 : natS1(⌧i) � natS2(⌧i) ;

3 Pour tout ⌧i 2 T tel que rctS1(⌧i) > 0 : natS1(⌧i) = natS2(⌧i).

�id est compatible avec FailT .

Preuve.

Supposons qu’on ait S1 �id S2 avec S1 2 FailT .

Il existe ⌧i 2 Active(S1) telle que

LaxityS1
(⌧i) = natS1(⌧i)� (Ti � Di)� rctS1(⌧i) < 0.

Par le résultat précédent ⌧i 2 Active(S2) et par définition de �id, comme

rctS1(⌧i) > 0, on a rctS1(⌧i) = rctS2(⌧i) et natS1(⌧i) = natS2(⌧i).

Donc LaxityS1
(⌧i) = LaxityS2

(⌧i) < 0 et S2 2 FailT .

Aline Goeminne Algorithmique I – Chapitre VI 46

Relation de simulation

Soit T un ensemble de tâches, le préordre idle tasks �id✓ States(T) ⇥
States(T) est tel que pour tout S1, S2 2 States(T), S1 �id S2 si et seule-

ment si :

1 rctS1 = rctS2 ;

2 Pour tout ⌧i 2 T tel que rctS1(⌧i) = 0 : natS1(⌧i) � natS2(⌧i) ;

3 Pour tout ⌧i 2 T tel que rctS1(⌧i) > 0 : natS1(⌧i) = natS2(⌧i).

Si S1 �id S2, alors Eligible(S1) ✓ Eligible(S2).

Preuve.

soit ⌧i 2 Eligible(S1), alors natS1(⌧i) = 0 et rctS1(⌧i) = 0.

par définition de �id, rctS2(⌧i) = rctS1(⌧i) = 0 et

0 = natS1(⌧i) � natS2(⌧i) � 0

⌧i 2 Eligible(S2)

Aline Goeminne Algorithmique I – Chapitre VI 47

Relation de simulation

Théorème 5. Soit T un ensemble de tâches et soit Run un ordonnanceur sans

mémoire pour T sur m processeurs. Alors �id est une relation de simulation

sur G = (States(T),E0
) compatible avec FailT .

Run est sans mémoire si pour tout S1, S2 2 States(T) avec Active(S1) =

Active(S2),

8⌧i 2 Active(S1), natS1(⌧i) = natS2(⌧i) ^ rctS1(⌧i) = rctS2(⌧i)

=) Run(S1) = Run(S2).

Aline Goeminne Algorithmique I – Chapitre VI 48

Pour aller plus loin

Papier de référence : [GGL13] : Multiprocessor schedulability of arbitrary

deadline sporadic tasks : complexity and antichain algorithm, G. Geeraerts,

J. Goosens and M. Lindström, Real-Time Syst 2013.

Les relations de simulation, bisimulation sont utilisées en model checking :

Principles of model checking, Christel Baier and Joost-Pieter Katoen, MIT

Press 2008.

Aline Goeminne Algorithmique I – Chapitre VI 49

