Algorithmique |

ALINE GOEMINNE

Chapitre VI :
Problemes d’accessibilité pour résoudre un probleme
d’ordonnancement de taches

2025 - 2026

Table des matieres

Introduction
Probleme d’ordonnancement

Probléme d'accessibilité
m Définitions et algorithme naif
m Relations de simulation
m Algorithme amélioré

De I'ordonnancement a |'accessibilité
m Etats du systeme
m Transitions du systeme
m Relation de simulation

Aline GOEMINNE Algorithmique | — Chapitre VI

Introduction

Probleme d'ordonnancement

ensemble de taches ordonnanceur
nombre de processeurs

N

Le systeme est-il ordonnancable ?

<N

Aline GOEMINNE Algorithmique | — Chapitre VI

Probleme d’accessibilité

D@

Vi >

un ensemble de sommets/états : {vi, vo, v3, v4, V5, Vg } ;

]
m un ensemble d'arcs/transitions;
m \» : état initial;
n

vs . état cible.

Aline GOEMINNE Algorithmique | — Chapitre VI

Ordonnancement = accessibilité

ensemble de taches ordonnanceur
nombre de processeurs

_—

Le systéme est-il ordonnancable ?]

7\

(2)

Aline GOEMINNE Algorithmique | — Chapitre VI

Probleme d'ordonnancement

Définition

Un systeme temps réel a taches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments
suivants :

m 7 ={mn,7,...,Th} un ensemble de n taches;

m pour tout 7; € T, T; > 0 est le temps minimal entre deux arrivées d'une
tache 7;;

m pour tout 77 € T, D; > 0 est la deadline relative ;

m pour tout 7; € T, C; > 0 est le temps d'exécution ;

T D,
1 2 3 i 3
Tl Tl 7-i TI
|
Ci

Aline GOEMINNE Algorithmique | — Chapitre VI

Définition

Un systeme temps réel a taches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments
suivants :

m 7 ={mn,7,...,7Tn} un ensemble de n taches;

m pour tout 77 € 7, T; > 0 est le temps minimal entre deux arrivées d'une
tache 7;;

m pour tout 77 € T, D; > 0 est la deadline relative ;

m pour tout 7; € T, C; > 0 est le temps d'exécution ;

Hypotheses :
m temps discret;
m travaux non parallélisables mais possibilité de migrer de processeur;
m la préemption et la migration non coliteux en temps;
m pourtoutl1 </ <n, T; >D;.

Aline GOEMINNE Algorithmique | — Chapitre VI 8
Exemple
Soit un systéme muni de 2 processeurs et de 3 taches :
Ti T,' D,' C,'
T1 6 6 4
) 6 5 5
T3 7 3 2

Ordonnanceur (intuition) : place sur les processeurs les taches actives de plus
haute importance (dont les indices sont les plus petits).

Exemple d'exécution du systeme
!
I, 72

73
mI

N
N

TJTQ
73

~~ la tache 73 rate sa deadline.
~~ |e systeme n'est pas ordonnancable avec cet ordonnanceur.

Aline GOEMINNE Algorithmique | — Chapitre VI

Probleme : Etant donné un systeme muni de m processeurs et de n taches
ainsi qu'un ordonnanceur, existe-t-il une exécution possible du systeme telle
qu'une tache rate sa deadline?

m si oui, le systeme n'est pas ordonnancgable avec cet ordonnanceur.
m ce probleme est PSPACE-complet.

Supposons dans un premier temps que I'on sache comment passer de ce
probléme d'ordonnancement a un probleme d'accessibilité dans un graphe.
(Voir Section 4 pour plus de détails)

ensemble de taches ordonnanceur
nombre de processeurs

[Le systeme est-il ordonnancable ?]

7N

m Le graphe obtenu peut étre extrémement grand.

m Les états du graphe peuvent étre dotés d'une sémantique particuliere qui
permet d’améliorer I'algorithme d’accessibilité “naif”.

Aline GOEMINNE Algorithmique | — Chapitre VI

Probleme d'accessibilité

Définitions et algorithme naif

Définition
On note G = (V, E) un graphe avec V un ensemble de sommets/états et

E C V x V un ensemble d’arcs/transitions.

Soit G un graphe, un chemin (fini) dans G est une suite (fini) de sommets de
G, m =my ... 7k telle que pour tout 0 < ¢ < k, (my, me41) € E.

Soit G un graphe et | C V un sous-ensemble de sommets initiaux, |'ensemble
des sommets accessibles depuis |, noté Reach(G, 1), est défini par :

Reach(G,)={veV |dIr=m ... mtqm €l A7 = v}

(D))

ml={w}

m Reach(G,l) = {w, v3, v, v, v}

Aline GOEMINNE Algorithmique | — Chapitre VI

Définition

3

[Soit G un graphe, | un sous-ensemble de sommets initiaux et T un sous-
ensemble de sommets cibles,

le probleme d'accessibilité demande s'il est possible d’'atteindre un sommet de
T depuis un sommet de |,

Reach(G,1)NT #0 7

.

Soit G un graphe, soit v eV et soit S C V :

m Succ(v) ={v/ € V| (v,Vv') € E} est I'ensemble des successeurs de v ;
m Succ(S) = U Succ(v)

veS

Aline GOEMINNE Algorithmique | — Chapitre VI 14

Algorithme “naif”

Algorithme 1

1/+0
2 Ro — |
3 répéter
4 R,'_l — R,'
I« i+1
R+ Rj_1 U SUCC(R,'_l)
si R, NT # () alors
| retourner Accessible

o N o o

9 jusqu'é R,’ = R,'_1
10 retourner Non accessible

~> algorithme polynomial en la taille du graphe.

Aline GOEMINNE Algorithmique | — Chapitre VI

Relations de simulation

Définition
Soit G un graphe, une relation de simulation! sur G est un préordre 2

<C V xV tel que : pour tout v, v, et v3 € V tels que (v, v») € E et vy < v3,
il existe v4 € V tel que (v3,v4) €EE et v» < vy.

@ -

I A

1. Rappel : < est un préordre si (1) pour tout v € V, v < v (réflexivité) et (2) pour tout
vi,va,v3 €V, si vi 2 v et vop < v3, alors vi < v3 (transitivité).

2. La notion de relation de simulation peut-étre définie de maniére plus générale dans le cadre
des systemes de transitions.

Aline GOEMINNE Algorithmique | — Chapitre VI

Définition
Soit G un graphe, une relation de simulation?! sur G est un préordre 2

<C VXV tel que : pour tout v1, vy et v3 € V tels que (v, vo) € Eet vy < vs,
il existe v4 € V tel que (v3,v4) €EE et v» <X vy.

If

Rem : Si v; < v3, on dit que v3 simule v; ou que v; est simulé par vs.

Soit <C V x V une relation de simulation et soit T C V, on dit que < est
compatible avec T si pour tout vi, v» € V tels que v; < vy,

sivy €T, alors vp, € T.

eT —
(Dans la suite on supposera < compatible avec T)
Aline GOEMINNE Algorithmique | — Chapitre VI 17

Conséquences

[Si on peut atteindre T depuis v; et si v; =< wuy, alors on peut atteindre T]

¢ o

PN

IA

PN

I A

Aline GOEMINNE Algorithmique | — Chapitre VI

Conséquences

d’'accessibilité, nous ne devons plus calculer les successeurs de v;.

[Lorsque vy et vy, tels que v; < v, ont été calculés a une étape de I'algorithme]

e

Aucun chemin depuis v; n'atteint T. |l existe un chemin depuis v; qui atteint T.
On peut ne pas explorer ses succes- Donc il existe un chemin depuis v, qui at-

Seurs.

Aline GOEMINNE

teint T.
On peut se contenter d’explorer les succes-

seurs de v,.

Algorithmique | — Chapitre VI

Algorithme amélioré

Algorithme amélioré

Etant donnés G un graphe, < une relation de simulation sur G et S C V un
sous-ensemble de sommets,

Max=(S)={veS|VW eS, (vv = v=V)}

m Intuitivement : Max=(S) est obtenu depuis S en enlevant tous les
sommets qui sont simulés par un autre sommet de S.

m Les éléments de Max=(S) ne sont pas comparables selon <.

m Ces ensembles d'éléments incomparables sont appelés des antichaines.

Aline GOEMINNE Algorithmique | — Chapitre VI 21

Algorithme amélioré
Algorithme 2

1< 0
Ro + Max=(1)
répéter
F’é,'_l — I'i,'
i<+ i+1
ﬁ,’ — ﬁ,'_l U SUCC(l’i;_l)
Fé,' — Maxj(FN{,-)
si Ry NT # 0 alors
L retourner Accessible

© 00 N O O b~ NN =

jusqu'é R,' = R,'_l
retourner Non accessible

1
1

- O

Aline GOEMINNE Algorithmique | — Chapitre VI

Algorithme amélioré

r 3

Lemme 1. Pour tout S C V, Max=(Succ(Max=(S))) = Max=(Succ(S)).

Lemme 2. Pour tout 51,5, C V,

Max=(S; U'S5) = Max=(Max=(S;) U Max=(S,)).
Lemme 3. Etant donnés G un graphe, | un ensemble de sommets initiaux, T
un ensemble de sommets cibles et < une relation de simulation sur G, posons
Ro,Ri,... et Ro, Ry, ... qui dénotent respectivement la séquence d’ensemble
calculee par I'Algorithme 1 et I'Algorithme 2. Pour tout i > 0, R; = Max=(R;)

Aline GOEMINNE Algorithmique | — Chapitre VI 23

Algorithme amélioré

Lemme 3. Etant donnés G un graphe, | un ensemble de sommets initiaux, T
un ensemble de sommets cibles et < une relation de simulation sur G, posons
Ro,R1,... et I?io, F~€1, ... qui dénotent respectivement la séquence d'ensemble
calculée par I'Algorithme 1 et I'Algorithme 2. Pour tout i > 0, R; = Max=(R;).

Preuve : Montrons le par récurrence sur i.
m Cas de base : si i =0, Ry = Max=(l) et Ry = | ~ OK.
= (HR) Ry = Max=(R), montrons que la propriété est vraie pour i = k + 1.

Rieir = MaxS (F"zk U succ(ﬁk)) (Par def.)
= Max™ (Max (R) U Max™ (Succ(Rk))) (Par Lem. 2)
= Max™ (Max (Max™(Ry)) U Max™ (Succ(Max™ (Rk)))) (Par HR)
= Max™ (Max (Ri) U Max™ (Succ(Rk))) (Par Lem. 1)
— Max= (Ry U Succ(Ry)) (Par Lem. 2)
= Max=(Ry41) (Par def.) [

Aline GOEMINNE Algorithmique | — Chapitre VI

Théoreme 4. Etant donnés G, |, T et =<, I'Algorithme 2 termine toujours et
retourne “Accessible” ssi T est accessible depuis I.

La preuve se base sur une comparaison entre la sequence Ro, R1, ... calculée par
I'’Algo. 1 (correct et qui termine) et la séquence Ro, Ry, ... calculée par I'Algo. 2.

Aline GOEMINNE Algorithmique | — Chapitre VI 25

La preuve se base sur une comparaison entre la sequence Ro, R1, ... calculée par
I'’Algo. 1 (correct et qui termine) et la séquence Ro, Ry, ... calculée par I'Algo. 2.
I) Supposons que T est accessible dans G en k étapes et pas moins.

1 (@(n -) <

cRy €R; € Rk

1.1) Supposons que Algo 2 s'arréte en ¢ < k étapes.

m Soit R,NT = (), mais R, CRy, donc R, N'T # () et Algo 1 devrait s'arréter en
< k étapes. CONTRAD.

m Soit Ry = Ry_1. On a alors que Max=(R,) = MaxZ(R¢_1) (par Lem. 3) mais
R¢ # Re—1 (sinon Algo 1 s'arréterait en < k étapes). En particulier, tous les
éléments de Ry sont simulés par un élément de Ry_;.

Vue Ry, v €eRiqu = (%)

m Siil existe v’ € Ry_; tel que vx < u/, alors comme vx € T,onaaussi ' €T
et donc R,_1 NT # (). CONTRAD

Aline GOEMINNE Algorithmique | — Chapitre VI

e1 (@H(n P) <7

eRy €R; € Ry

Vu€e Ry, v €Re_qu = (%)

m Sinon, soit 0 < m < k, le plus petit indice® tel que
u’ € Re—1, vin = u' et —|(E|U” € Re—1, Vm+1 = V”) (**)

Puisque nous sommes dans la situation suivante :

Vim = u’
Vm+1 = X =< y

Il existe x € V, tel que x € Ry (car v’ € Ry—1), (v, x) € E et viny1 = x.
Comme x € Ry, il existe y € Ry_1 tel que x <y par (*).
CONTRAD avec (**).

3. Un tel indice existe grace a (x) (v € Ry) et le point précédent.
Aline GOEMINNE Algorithmique | — Chapitre VI 26

1 @H(v) <7

cRy €R; € Ry

1.2) Algo 2 s'arréte a I'étape k.
m vk €T et vk € R (par hypothése) = R, N'T # 0.
m R = I\/Iaxj(Rk) (par Lem. 3) donc il existe v’ € Ry tel que vk < Vv .
m Comme vk €T, v € Tetdonc ReNT # 0
m Algo 2 s’arréte a I'étape k et retourne “Accessible”.
I1) Supposons que T n’est pas accessible dans G.
m Pourtouti >0, RNT=20;
m Comme R; CR;, RiN'T =0 (pour tout i > 0).
m Algo 2 ne s’arrétera pas en retournant “Accessible” .
Il reste a prouver que la boucle s'arréte.
m Comme T n'est pas accessible, il existe k tel que Ry = Rg_1.
m Dans ce cas Max=(Ry) = Max=(Rk_1).

m Donc, ﬁ’k = R’k_l et Algo 2 s'arréte en retournant “Non accessible”.

Aline GOEMINNE Algorithmique | — Chapitre VI

De ['ordonnancement a |'accessibilité

Définition (rappel)

Un systeme temps réel a taches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments
suivants :

m 7 ={mn,7,...,7Tn} un ensemble de n taches;

m pour tout 77 € 7, T; > 0 est le temps minimal entre deux arrivées d'une
tache 7;;

m pour tout 77 € T, D; > 0 est la deadline relative ;

m pour tout 7; € T, C; > 0 est le temps d'exécution ;

Hypotheses :
m temps discret;
m travaux non parallélisables mais possibilité de migrer de processeur;
m la préemption et la migration non coliteux en temps;
m pourtoutl </ <n, T; >D;.

Aline GOEMINNE Algorithmique | — Chapitre VI

Questions :
m Comment définir les états/sommets?
m Comment définir les transitions/arcs entre ces états?
m Quels états choisir comme états initiaux ?

m Quels états choisir comme états cibles?

Aline GOEMINNE Algorithmique | — Chapitre VI

Etats du systeme

Etats du systeme

Afin de modéliser I'exécution du systeme, les seules informations nécessaires a
conserver a chaque instant sont :

m pour chaque tiche 7; € T, nat(7;) ? est le plus petit laps de temps
possible avant |'arrivée d'une prochaine tache 7;;

m pour chaque tiche 7; € T, rct(7;) ? est le temps d'exécution restant pour
la tache 7; en cours de traitement.

a. nat pour (earliest) next arrival time
b. rct pour remaining processing time

Soit T = {71,...,7s} un ensemble de taches, un état du systeme de T est
un uplet S = {(rcts(7;), nats(7i));<;<,) avec :

mrcts: 7T — {0,1,...,Cpax} est une fonction telle que Cpax = max; C;;

m nats : 7 — {0,1,..., Tax} est une fonction avec T . = max; T;.

L'ensemble des états du systéme est noté States(7).

Aline GOEMINNE Algorithmique | — Chapitre VI 32

Etats du systeme

Exemple

Soit un systéme muni de 2 processeurs et de 3 taches :

7 || Ti | Di | G
T1 6 6 4
T2 6 5 5
T3 7 3 2
Exemple d'exécution du systeme
1
o] "
73
nll
TJTQ h
T3

L'état qui correspond a la croix rouge est donné par :

T1 T2 73
rct 1 3 1 ~ <(1a3)7(374)7(174)>
nat 3141 4

Aline GOEMINNE Algorithmique | — Chapitre VI

Taches éligibles, actives, en attente

L'ensemble des taches éligibles dans un état S est donné par :
Eligible(S) = {7; € T | nats(7;) = 0 A rcts(7;) = 0}.
L'ensemble des taches actives dans un état S est donné par :
Active(S) = {7; € T | rcts(7;) > 0}.
L’'ensemble des taches en attente dans un état S est donné par :

Idle(S) = T \ Active(S).

Aline GOEMINNE Algorithmique | — Chapitre VI 34

Laxité d'une tache et mauvais états

Comment caractériser qu'une tache rate sa deadline?

La laxité de la tache 7; dans un état S est donné par :
LaxityS(T,-) = nats(T,') = (T,‘ = D,') = I’Cts(T,').
L’ensemble des mauvais états/états défaillants est défini par :

Fail; = {S € States(7) | il existe 7; € Active(S), Laxitys(7;) < 0}

t=T;— nat(T,-)
temps restant — deadline : D; — t

- temps d'exécution encore
TT,- t nécessaire : rct(7;)

(C;, T;) (rct(7;), nat(r;)) Condition a respecter : (2) > (3)

Aline GOEMINNE Algorithmique | — Chapitre VI

L'ensemble des mauvais états/états défaillants est défini par :

Fail; = {S € States(7) | il existe 7; € Active(S), Laxitys(7;) < 0}

t=T,; — nat(T,-)
temps restant — deadline : D; — t

temps d’'exécution encore

TTi : nécessaire : rct(7;)
(C, T (ret(m), nat(r)) Condition a respecter : (2) > (3)
(2) > (3)

D; — t > rct(7;)

D; — (T; — nat(7;)) > rct(m;)
nat(7;) — (T; — D;) — rct(7;) > 0
Laxitys(7;) > 0

Aline GOEMINNE Algorithmique | — Chapitre VI

Intuition

((0,0),(0,0),(0,0))
I

(m1 A T3 arrivent)

<(476)7(0’0)’ (2?7)> L(7'3):1

o

-~.

71
T2
73

(1 unité de temps s'écoule)

%
<(375)7(070)7 (176)> L(7_3):1
|

(T2 arrive)

@2 ((3.5), (5,6),(1,6))

T3

~N o o)
w o oU
N oA

1T

I

-

(1 unité de temps s'écoule)

TlTTQ

" <(274)’(475)7(175)> L(T3):O

(1 unité de temps s'écoule)

{
((1,3),(3,4),(1,4))

Aline GOEMINNE Algorithmique | — Chapitre VI

Transitions du systéme

Ordonnanceur

Un ordonnanceur pour 7 sur m processeurs est une fonction Run
States(7) — P(T) telle que, pour tout S :

m Run(S) C Active(S);
m 0 <|Run(S)| < m.

Exemple d’ordonnanceur :

Soit S un état du systeme et £ = min{m, |Active(S)|}, I'ordonnanceur GFP est
une fonction Runggp telle que : si Rungep = {7, 7}, ..., T, }, alors pour tout
1 <j </ et pour tout 7, € Active(S) \ Rungep, on a k > i;.

Les taches sont classées par ordre de priorité (celles d'indice le plus petit sont
les plus prioritaires) et les taches actives les plus prioritaires sont ordonnancées
en premier.

Aline GOEMINNE Algorithmique | — Chapitre VI

Transitions (2 types de transitions)

Transitions de requétes : si on est dans un état S, un ensemble de taches
7 C Eligible(S) éligibles arrivent, si 7; € 7, rct(7;) = C; et nat(r;) = T,.

transitions de tick d’horloge : modélisation de |'écoulement d'une unité
de temps; si on est dans un état S,

m décrémenter les rct de toutes les tiches de Run(S) (toutes les taches
ordonnancées)
m décrémenter les nat de toutes les taches du systeme.

(Pour plus de formalisme se référer a [GGL13])

[GGL13] : Multiprocessor schedulability of arbitrary deadline sporadic tasks : complexity and antichain

algorithm, G. Geeraerts, J. Goosens and M. Lindstrém, Real-Time Syst 2013.

Aline GOEMINNE Algorithmique | — Chapitre VI

Exemple
={n} 72 {ri. s}
((4.6),(0,0).(0,0)) ((4,6).(5.6). (2.7)) ((4.6),(0,0),2.7))
Ti Ti D ; C ; tick tick tick
T1 6| 6 | 4 ((3,5).0,0), (0,0) ((3,5).4,5). (2,6) ((3,5).(0,0).(1,6)))
T 6 5 5 tick T={m}
3] 3]2 (2.4).(3.4).(2.5)) ((3.5).(5.6).(1.6)))

tick

((2,4),(4,5), (1,5))

tick

((1,3),(3,4): (1, 4))

Aline GOEMINNE Algorithmique | — Chapitre VI

Retour au probleme d'accessibilité

Soient 7 un ensemble de taches et Run un ordonnanceur sur m processeurs, on
définit :
m G = (States(7),E’) avec E’ les transitions de requétes et de tick d’horloge
comme définies précédemment.

= | = {((0,0),...,(0,0))}
s T = Fail.

alors on a

-

Reach(G,1)NT # 0
ssi
il existe une exécution du systeme telle qu'une tache dépasse sa deadline
(le systeme n'est pas ordonnangable)

Aline GOEMINNE Algorithmique | — Chapitre VI

Relation de simulation

Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) X
States(7") est tel que pour tout S;,S, € States(7), S1 =ig Sz si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(77) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (7;) = nats,(7;).

Intuitivement : S, simule Sy si
les deux états coincident sur leurs taches actives (i.e., les taches 7; telles
que rcts, (77) > 0)
la valeur de nat de chaque tache en attente est plus petite que dans S, que

Si.
Exemple :
Soient S; = ((0,3),(2,3)), S2 = ((0,1),(2,3)) et S3 = ((0,1),(3,4)).
m S <iaSo

m S, et S3 non comparables.

Aline GOEMINNE Algorithmique | — Chapitre VI 44

Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) x
States(7) est tel que pour tout S;,S, € States(7), S1 =ig S2 si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(77) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (77) = nats,(7;).

[Si S1 <id Sa, alors Active(S1) = Active(Sy).]

Vrai car rctg, = rcts,.

Aline GOEMINNE Algorithmique | — Chapitre VI

Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) X
States(7) est tel que pour tout S;,S, € States(7), S1 =ig Sz si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(7;) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (7;) = nats,(7;).

[<id est compatible avec Fail .]

Preuve.
m Supposons qu'on ait S; =<ig S, avec S; € Fail .
m || existe 7; € Active(S;) telle que
Laxitys (7;) = nats,(7;) — (T; — D;) — rcts, (7;) < 0.
m Par le résultat précédent 7; € Active(S,) et par définition de =<;4, comme
rcts, (77) > 0, on a rcts, (7;) = rcts,(7;) et nats, (7;) = nats,(7;).

m Donc Laxityg, (7;) = Laxitys,(77) < 0 et S, € Faily.

Aline GOEMINNE Algorithmique | — Chapitre VI 46

Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) X
States(7) est tel que pour tout S;,S, € States(7), S1 =ig Sz si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(77) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (7;) = nats,(7;).

[i 51 =S, alors Eligible(S1) C Eligible(Sy).)

Preuve.
m soit 7; € Eligible(S;1), alors nats,(7;) = 0 et rcts, (77) = 0.

m par définition de =<4, rcts,(7;) = rcts,(7;) = 0 et
0= natsl(T,') > nat52(7',-) >0

m 7; € Eligible(S,)

Aline GOEMINNE Algorithmique | — Chapitre VI

Relation de simulation

Théoreme 5. Soit 7 un ensemble de tiches et soit Run un ordonnanceur sans
mémoire pour 7 sur m processeurs. Alors <iq est une relation de simulation
sur G = (States(7), E’) compatible avec Fail .

Run est sans mémoire si pour tout S;,S, € States(7) avec Active(S;) =
Active(S,),

V71 € Active(Sy), nats, (77) = nats,(77) A rcts, (77) = rcts, (77)
— Run(Sl) = RUI”I(SQ).

Aline GOEMINNE Algorithmique | — Chapitre VI 48

Pour aller plus loin

m Papier de référence : [GGL13] : Multiprocessor schedulability of arbitrary
deadline sporadic tasks : complexity and antichain algorithm, G. Geeraerts,
J. Goosens and M. Lindstrom, Real-Time Syst 2013.

m Les relations de simulation, bisimulation sont utilisées en model checking :
Principles of model checking, Christel Baier and Joost-Pieter Katoen, MIT
Press 2008.

Aline GOEMINNE Algorithmique | — Chapitre VI

