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Introduction

Probleme d'ordonnancement

ensemble de taches ordonnanceur
nombre de processeurs

N

Le systeme est-il ordonnancable ?

<N
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Probleme d’accessibilité

D@

Vi >

un ensemble de sommets/états : {vi, vo, v3, v4, V5, Vg } ;

]
m un ensemble d'arcs/transitions;
m \» : état initial;
n

vs . état cible.
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Ordonnancement = accessibilité

ensemble de taches ordonnanceur
nombre de processeurs

_—

Le systéme est-il ordonnancable ? ]

7\

(2)
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Probleme d'ordonnancement

Définition

Un systeme temps réel a taches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments
suivants :

m 7 ={mn,7,...,Th} un ensemble de n taches;

m pour tout 7; € T, T; > 0 est le temps minimal entre deux arrivées d'une
tache 7;;

m pour tout 77 € T, D; > 0 est la deadline relative ;

m pour tout 7; € T, C; > 0 est le temps d'exécution ;

T D,
1 2 3 i 3
Tl Tl 7-i TI
|
Ci
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Définition

Un systeme temps réel a taches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments
suivants :

m 7 ={mn,7,...,7Tn} un ensemble de n taches;

m pour tout 77 € 7, T; > 0 est le temps minimal entre deux arrivées d'une
tache 7;;

m pour tout 77 € T, D; > 0 est la deadline relative ;

m pour tout 7; € T, C; > 0 est le temps d'exécution ;

Hypotheses :
m temps discret;
m travaux non parallélisables mais possibilité de migrer de processeur;
m la préemption et la migration non coliteux en temps;
m pourtoutl1 </ <n, T; >D;.
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Exemple
Soit un systéme muni de 2 processeurs et de 3 taches :
Ti T,' D,' C,'
T1 6 6 4
) 6 5 5
T3 7 3 2

Ordonnanceur (intuition) : place sur les processeurs les taches actives de plus
haute importance (dont les indices sont les plus petits).

Exemple d'exécution du systeme
!
I, 72

73
mI

N
N

TJTQ
73

~~ la tache 73 rate sa deadline.
~~ |e systeme n'est pas ordonnancable avec cet ordonnanceur.
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Probleme : Etant donné un systeme muni de m processeurs et de n taches
ainsi qu'un ordonnanceur, existe-t-il une exécution possible du systeme telle
qu'une tache rate sa deadline?

m si oui, le systeme n'est pas ordonnancgable avec cet ordonnanceur.
m ce probleme est PSPACE-complet.

Supposons dans un premier temps que I'on sache comment passer de ce
probléme d'ordonnancement a un probleme d'accessibilité dans un graphe.
(Voir Section 4 pour plus de détails)

ensemble de taches ordonnanceur
nombre de processeurs

[ Le systeme est-il ordonnancable ? ]

7N

m Le graphe obtenu peut étre extrémement grand.

m Les états du graphe peuvent étre dotés d'une sémantique particuliere qui
permet d’améliorer I'algorithme d’accessibilité “naif”.
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Probleme d'accessibilité




Définitions et algorithme naif

Définition
On note G = (V, E) un graphe avec V un ensemble de sommets/états et

E C V x V un ensemble d’arcs/transitions.

Soit G un graphe, un chemin (fini) dans G est une suite (fini) de sommets de
G, m =my ... 7k telle que pour tout 0 < ¢ < k, (my, me41) € E.

Soit G un graphe et | C V un sous-ensemble de sommets initiaux, |'ensemble
des sommets accessibles depuis |, noté Reach(G, 1), est défini par :

Reach(G,)={veV |dIr=m ... mtqm €l A7 = v}

(D))

ml={w}

m Reach(G,l) = {w, v3, v, v, v}
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Définition

3

[ Soit G un graphe, | un sous-ensemble de sommets initiaux et T un sous-
ensemble de sommets cibles,

le probleme d'accessibilité demande s'il est possible d’'atteindre un sommet de
T depuis un sommet de |,

Reach(G,1)NT #0 7

.

Soit G un graphe, soit v eV et soit S C V :

m Succ(v) ={v/ € V| (v,Vv') € E} est I'ensemble des successeurs de v ;
m Succ(S) = U Succ(v)

veS
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Algorithme “naif”

Algorithme 1

1/+0
2 Ro — |
3 répéter
4 R,'_l — R,'
I« i+1
R+ Rj_1 U SUCC(R,'_l)
si R, NT # () alors
| retourner Accessible

o N o o

9 jusqu'é R,’ = R,'_1
10 retourner Non accessible

~> algorithme polynomial en la taille du graphe.
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Relations de simulation

Définition
Soit G un graphe, une relation de simulation! sur G est un préordre 2

<C V xV tel que : pour tout v, v, et v3 € V tels que (v, v») € E et vy < v3,
il existe v4 € V tel que (v3,v4) €EE et v» < vy.

@ -

I A

1. Rappel : < est un préordre si (1) pour tout v € V, v < v (réflexivité) et (2) pour tout
vi,va,v3 €V, si vi 2 v et vop < v3, alors vi < v3 (transitivité).

2. La notion de relation de simulation peut-étre définie de maniére plus générale dans le cadre
des systemes de transitions.
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Définition
Soit G un graphe, une relation de simulation?! sur G est un préordre 2

<C VXV tel que : pour tout v1, vy et v3 € V tels que (v, vo) € Eet vy < vs,
il existe v4 € V tel que (v3,v4) €EE et v» <X vy.

If

Rem : Si v; < v3, on dit que v3 simule v; ou que v; est simulé par vs.

Soit <C V x V une relation de simulation et soit T C V, on dit que < est
compatible avec T si pour tout vi, v» € V tels que v; < vy,

sivy €T, alors vp, € T.

eT —
(Dans la suite on supposera < compatible avec T)
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Conséquences

[ Si on peut atteindre T depuis v; et si v; =< wuy, alors on peut atteindre T]

¢ o

PN

IA

PN

I A
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Conséquences

d’'accessibilité, nous ne devons plus calculer les successeurs de v;.

[ Lorsque vy et vy, tels que v; < v, ont été calculés a une étape de I'algorithme]

e

Aucun chemin depuis v; n'atteint T. |l existe un chemin depuis v; qui atteint T.
On peut ne pas explorer ses succes- Donc il existe un chemin depuis v, qui at-

Seurs.

Aline GOEMINNE

teint T.
On peut se contenter d’explorer les succes-

seurs de v,.
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Algorithme amélioré

Etant donnés G un graphe, < une relation de simulation sur G et S C V un
sous-ensemble de sommets,

Max=(S)={veS|VW eS, (vv = v=V)}

m Intuitivement : Max=(S) est obtenu depuis S en enlevant tous les
sommets qui sont simulés par un autre sommet de S.

m Les éléments de Max=(S) ne sont pas comparables selon <.

m Ces ensembles d'éléments incomparables sont appelés des antichaines.
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Algorithme amélioré
Algorithme 2

1< 0
Ro + Max=(1)
répéter
F’é,'_l — I'i,'
i<+ i+1
ﬁ,’ — ﬁ,'_l U SUCC(l’i;_l)
Fé,' — Maxj(FN{,-)
si Ry NT # 0 alors
L retourner Accessible

© 00 N O O b~ NN =

jusqu'é R,' = R,'_l
retourner Non accessible

1
1

- O
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Algorithme amélioré

r 3

Lemme 1. Pour tout S C V, Max=(Succ(Max=(S))) = Max=(Succ(S)).

Lemme 2. Pour tout 51,5, C V,

Max=(S; U'S5) = Max=(Max=(S;) U Max=(S,)).
Lemme 3. Etant donnés G un graphe, | un ensemble de sommets initiaux, T
un ensemble de sommets cibles et < une relation de simulation sur G, posons
Ro,Ri,... et Ro, Ry, ... qui dénotent respectivement la séquence d’ensemble
calculee par I'Algorithme 1 et I'Algorithme 2. Pour tout i > 0, R; = Max=(R; )

Aline GOEMINNE Algorithmique | — Chapitre VI 23

Algorithme amélioré

Lemme 3. Etant donnés G un graphe, | un ensemble de sommets initiaux, T
un ensemble de sommets cibles et < une relation de simulation sur G, posons
Ro,R1,... et I?io, F~€1, ... qui dénotent respectivement la séquence d'ensemble
calculée par I'Algorithme 1 et I'Algorithme 2. Pour tout i > 0, R; = Max=(R;).

Preuve : Montrons le par récurrence sur i.
m Cas de base : si i =0, Ry = Max=(l) et Ry = | ~ OK.
= (HR) Ry = Max=(R), montrons que la propriété est vraie pour i = k + 1.

Rieir = MaxS (F"zk U succ(ﬁk)) (Par def.)
= Max™ (Max (R) U Max™ (Succ(Rk))) (Par Lem. 2)
= Max™ (Max (Max™(Ry)) U Max™ (Succ(Max™ (Rk)))) (Par HR)
= Max™ (Max (Ri) U Max™ (Succ(Rk))) (Par Lem. 1)
— Max= (Ry U Succ(Ry)) (Par Lem. 2)
= Max=(Ry41) (Par def.) [
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Théoreme 4. Etant donnés G, |, T et =<, I'Algorithme 2 termine toujours et
retourne “Accessible” ssi T est accessible depuis I.

La preuve se base sur une comparaison entre la sequence Ro, R1, ... calculée par
I'’Algo. 1 (correct et qui termine) et la séquence Ro, Ry, ... calculée par I'Algo. 2.
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La preuve se base sur une comparaison entre la sequence Ro, R1, ... calculée par
I'’Algo. 1 (correct et qui termine) et la séquence Ro, Ry, ... calculée par I'Algo. 2.
I) Supposons que T est accessible dans G en k étapes et pas moins.

1 (@(n - ) <

cRy €R; € Rk

1.1) Supposons que Algo 2 s'arréte en ¢ < k étapes.

m Soit R,NT = (), mais R, CRy, donc R, N'T # () et Algo 1 devrait s'arréter en
< k étapes. CONTRAD.

m Soit Ry = Ry_1. On a alors que Max=(R,) = MaxZ(R¢_1) (par Lem. 3) mais
R¢ # Re—1 (sinon Algo 1 s'arréterait en < k étapes). En particulier, tous les
éléments de Ry sont simulés par un élément de Ry_;.

Vue Ry, v €eRiqu = (%)

m Siil existe v’ € Ry_; tel que vx < u/, alors comme vx € T,onaaussi ' €T
et donc R,_1 NT # (). CONTRAD
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e1 (@H(n P ) <7

eRy €R; € Ry

Vu€e Ry, v €Re_qu = (%)

m Sinon, soit 0 < m < k, le plus petit indice® tel que
u’ € Re—1, vin = u' et —|(E|U” € Re—1, Vm+1 = V”) (**)

Puisque nous sommes dans la situation suivante :

Vim = u’
Vm+1 = X =< y

Il existe x € V, tel que x € Ry (car v’ € Ry—1), (v, x) € E et viny1 = x.
Comme x € Ry, il existe y € Ry_1 tel que x <y par (*).
CONTRAD avec (**).

3. Un tel indice existe grace a (x) (v € Ry) et le point précédent.
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1 @H(v ) <7

cRy €R; € Ry

1.2) Algo 2 s'arréte a I'étape k.
m vk €T et vk € R (par hypothése) = R, N'T # 0.
m R = I\/Iaxj(Rk) (par Lem. 3) donc il existe v’ € Ry tel que vk < Vv .
m Comme vk €T, v € Tetdonc ReNT # 0
m Algo 2 s’arréte a I'étape k et retourne “Accessible”.
I1) Supposons que T n’est pas accessible dans G.
m Pourtouti >0, RNT=20;
m Comme R; CR;, RiN'T =0 (pour tout i > 0).
m Algo 2 ne s’arrétera pas en retournant “Accessible” .
Il reste a prouver que la boucle s'arréte.
m Comme T n'est pas accessible, il existe k tel que Ry = Rg_1.
m Dans ce cas Max=(Ry) = Max=(Rk_1).

m Donc, ﬁ’k = R’k_l et Algo 2 s'arréte en retournant “Non accessible”.
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De ['ordonnancement a |'accessibilité

Définition (rappel)

Un systeme temps réel a taches sporadiques, préemptives avec des dead-
lines arbitraires sur des processeurs identiques est caractérisé par les éléments
suivants :

m 7 ={mn,7,...,7Tn} un ensemble de n taches;

m pour tout 77 € 7, T; > 0 est le temps minimal entre deux arrivées d'une
tache 7;;

m pour tout 77 € T, D; > 0 est la deadline relative ;

m pour tout 7; € T, C; > 0 est le temps d'exécution ;

Hypotheses :
m temps discret;
m travaux non parallélisables mais possibilité de migrer de processeur;
m la préemption et la migration non coliteux en temps;
m pourtoutl </ <n, T; >D;.
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Questions :
m Comment définir les états/sommets?
m Comment définir les transitions/arcs entre ces états?
m Quels états choisir comme états initiaux ?

m Quels états choisir comme états cibles?

Aline GOEMINNE Algorithmique | — Chapitre VI

Etats du systeme




Etats du systeme

Afin de modéliser I'exécution du systeme, les seules informations nécessaires a
conserver a chaque instant sont :

m pour chaque tiche 7; € T, nat(7;) ? est le plus petit laps de temps
possible avant |'arrivée d'une prochaine tache 7;;

m pour chaque tiche 7; € T, rct(7;) ? est le temps d'exécution restant pour
la tache 7; en cours de traitement.

a. nat pour (earliest) next arrival time
b. rct pour remaining processing time

Soit T = {71,...,7s} un ensemble de taches, un état du systeme de T est
un uplet S = {(rcts(7;), nats(7i));<;<,) avec :

mrcts: 7T — {0,1,...,Cpax} est une fonction telle que Cpax = max; C;;

m nats : 7 — {0,1,..., Tax} est une fonction avec T . = max; T;.

L'ensemble des états du systéme est noté States(7).
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Etats du systeme

Exemple

Soit un systéme muni de 2 processeurs et de 3 taches :

7 || Ti | Di | G
T1 6 6 4
T2 6 5 5
T3 7 3 2
Exemple d'exécution du systeme
1
o] "
73
nll
TJTQ h
T3

L'état qui correspond a la croix rouge est donné par :

T1 T2 73
rct 1 3 1 ~ <(1a3)7(374)7(174)>
nat 3141 4
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Taches éligibles, actives, en attente

L'ensemble des taches éligibles dans un état S est donné par :
Eligible(S) = {7; € T | nats(7;) = 0 A rcts(7;) = 0}.
L'ensemble des taches actives dans un état S est donné par :
Active(S) = {7; € T | rcts(7;) > 0}.
L’'ensemble des taches en attente dans un état S est donné par :

Idle(S) = T \ Active(S).
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Laxité d'une tache et mauvais états

Comment caractériser qu'une tache rate sa deadline?

La laxité de la tache 7; dans un état S est donné par :
LaxityS(T,-) = nats(T,') = (T,‘ = D,') = I’Cts(T,').
L’ensemble des mauvais états/états défaillants est défini par :

Fail; = {S € States(7) | il existe 7; € Active(S), Laxitys(7;) < 0}

t=T;— nat(T,-)
temps restant — deadline : D; — t

- temps d'exécution encore
TT,- t nécessaire : rct(7;)

(C;, T;) (rct(7;), nat(r;)) Condition a respecter : (2) > (3)
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L'ensemble des mauvais états/états défaillants est défini par :

Fail; = {S € States(7) | il existe 7; € Active(S), Laxitys(7;) < 0}

t=T,; — nat(T,-)
temps restant — deadline : D; — t

temps d’'exécution encore

TTi : nécessaire : rct(7;)
(C, T (ret(m), nat(r)) Condition a respecter : (2) > (3)
(2) > (3)

D; — t > rct(7;)

D; — (T; — nat(7;)) > rct(m;)
nat(7;) — (T; — D;) — rct(7;) > 0
Laxitys(7;) > 0
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Intuition

((0,0),(0,0),(0,0))
I

(m1 A T3 arrivent)

<(476)7(0’0)’ (2?7)> L(7'3):1

o

-~.

71
T2
73

(1 unité de temps s'écoule)

%
<(375)7(070)7 (176)> L(7_3):1
|

(T2 arrive)

@2 ((3.5), (5,6),(1,6))

T3

~N o o)
w o oU
N oA

1T

I

-

(1 unité de temps s'écoule)

TlTTQ

" <(274)’(475)7(175)> L(T3):O

(1 unité de temps s'écoule)

{
((1,3),(3,4),(1,4))
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Transitions du systéme

Ordonnanceur

Un ordonnanceur pour 7 sur m processeurs est une fonction Run
States(7) — P(T) telle que, pour tout S :

m Run(S) C Active(S);
m 0 <|Run(S)| < m.

Exemple d’ordonnanceur :

Soit S un état du systeme et £ = min{m, |Active(S)|}, I'ordonnanceur GFP est
une fonction Runggp telle que : si Rungep = {7, 7}, ..., T, }, alors pour tout
1 <j </ et pour tout 7, € Active(S) \ Rungep, on a k > i;.

Les taches sont classées par ordre de priorité (celles d'indice le plus petit sont
les plus prioritaires) et les taches actives les plus prioritaires sont ordonnancées
en premier.
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Transitions (2 types de transitions)

Transitions de requétes : si on est dans un état S, un ensemble de taches
7 C Eligible(S) éligibles arrivent, si 7; € 7, rct(7;) = C; et nat(r;) = T,.

transitions de tick d’horloge : modélisation de |'écoulement d'une unité
de temps; si on est dans un état S,

m décrémenter les rct de toutes les tiches de Run(S) (toutes les taches
ordonnancées)
m décrémenter les nat de toutes les taches du systeme.

(Pour plus de formalisme se référer a [GGL13])

[GGL13] : Multiprocessor schedulability of arbitrary deadline sporadic tasks : complexity and antichain

algorithm, G. Geeraerts, J. Goosens and M. Lindstrém, Real-Time Syst 2013.
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Exemple
={n} 72 {ri. s}
((4.6),(0,0).(0,0)) ((4,6).(5.6). (2.7)) ((4.6),(0,0),2.7))
Ti Ti D ; C ; tick tick tick
T1 6| 6 | 4 ((3,5).0,0), (0,0) ((3,5).4,5). (2,6) ((3,5).(0,0).(1,6)))
T 6 5 5 tick T={m}
3] 3]2 (2.4).(3.4).(2.5)) ((3.5).(5.6).(1.6)))

tick

((2,4),(4,5), (1,5))

tick

((1,3),(3,4): (1, 4))
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Retour au probleme d'accessibilité

Soient 7 un ensemble de taches et Run un ordonnanceur sur m processeurs, on
définit :
m G = (States(7),E’) avec E’ les transitions de requétes et de tick d’horloge
comme définies précédemment.

= | = {((0,0),...,(0,0))}
s T = Fail.

alors on a

-

Reach(G,1)NT # 0
ssi
il existe une exécution du systeme telle qu'une tache dépasse sa deadline
(le systeme n'est pas ordonnangable)
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Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) X
States(7") est tel que pour tout S;,S, € States(7), S1 =ig Sz si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(77) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (7;) = nats,(7;).

Intuitivement : S, simule Sy si
les deux états coincident sur leurs taches actives (i.e., les taches 7; telles
que rcts, (77) > 0)
la valeur de nat de chaque tache en attente est plus petite que dans S, que

Si.
Exemple :
Soient S; = ((0,3),(2,3)), S2 = ((0,1),(2,3)) et S3 = ((0,1),(3,4)).
m S <iaSo

m S, et S3 non comparables.
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Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) x
States(7) est tel que pour tout S;,S, € States(7), S1 =ig S2 si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(77) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (77) = nats,(7;).

[ Si S1 <id Sa, alors Active(S1) = Active(Sy). ]

Vrai car rctg, = rcts,.
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Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) X
States(7) est tel que pour tout S;,S, € States(7), S1 =ig Sz si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(7;) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (7;) = nats,(7;).

[ <id est compatible avec Fail . ]

Preuve.
m Supposons qu'on ait S; =<ig S, avec S; € Fail .
m || existe 7; € Active(S;) telle que
Laxitys (7;) = nats,(7;) — (T; — D;) — rcts, (7;) < 0.
m Par le résultat précédent 7; € Active(S,) et par définition de =<;4, comme
rcts, (77) > 0, on a rcts, (7;) = rcts,(7;) et nats, (7;) = nats,(7;).

m Donc Laxityg, (7;) = Laxitys,(77) < 0 et S, € Faily.
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Relation de simulation

Soit 7 un ensemble de taches, le préordre idle tasks <;qC States(7) X
States(7) est tel que pour tout S;,S, € States(7), S1 =ig Sz si et seule-
ment si :

rcts, = rcts, ;
Pour tout 7; € T tel que rcts,(77) = 0 : nats, (77) > nats,(7;) ;
Pour tout 7; € T tel que rcts,(7;) > 0 : nats, (7;) = nats,(7;).

[ i 51 =S, alors Eligible(S1) C Eligible(Sy). )

Preuve.
m soit 7; € Eligible(S;1), alors nats,(7;) = 0 et rcts, (77) = 0.

m par définition de =<4, rcts,(7;) = rcts,(7;) = 0 et
0= natsl(T,') > nat52(7',-) >0

m 7; € Eligible(S,)
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Relation de simulation

Théoreme 5. Soit 7 un ensemble de tiches et soit Run un ordonnanceur sans
mémoire pour 7 sur m processeurs. Alors <iq est une relation de simulation
sur G = (States(7), E’) compatible avec Fail .

Run est sans mémoire si pour tout S;,S, € States(7) avec Active(S;) =
Active(S,),

V71 € Active(Sy), nats, (77) = nats,(77) A rcts, (77) = rcts, (77)
— Run(Sl) = RUI”I(SQ).

Aline GOEMINNE Algorithmique | — Chapitre VI 48

Pour aller plus loin

m Papier de référence : [GGL13] : Multiprocessor schedulability of arbitrary
deadline sporadic tasks : complexity and antichain algorithm, G. Geeraerts,
J. Goosens and M. Lindstrom, Real-Time Syst 2013.

m Les relations de simulation, bisimulation sont utilisées en model checking :
Principles of model checking, Christel Baier and Joost-Pieter Katoen, MIT
Press 2008.
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